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Abstract

Web crawlers visit internet applications, collect data, and learn about new web pages

from visited pages. Web crawlers have a long and interesting history. Quick expansion

of the web, and the complexity added to web applications have made the process of

crawling a very challenging one. Different solutions have been proposed to reduce the

time and cost of crawling.

New generation of web applications, known as Rich Internet Applications (RIAs),

pose major challenges to the web crawlers. RIAs shift a portion of the computation to

the client side. Shifting a portion of the application to the client browser influences the

web crawler in two ways: First, the one-to-one correlation between the URL and the

state of the application, that exists in traditional web applications, is broken. Second,

reaching a state of the application is no longer a simple operation of navigating to the

target URL, but often means navigating to a seed URL and executing a chain of events

from it. Due to these challenges, crawling a RIA can take a prohibitively long time.

This thesis studies applying distributed computing and parallel processing principles

to the field of RIA crawling to reduce the time. We propose different algorithms to

concurrently crawl a RIA over several nodes. The proposed algorithms are used as

a building block to construct a distributed crawler of RIAs. The different algorithms

proposed represent different trade-offs between communication and computation.

This thesis explores the effect of making different trade-offs and their effect on the

time it takes to crawl RIAs. We study the cost of running a distributed RIA crawl with

client-server architecture and compare it with a peer-to-peer architecture. We further

study distribution of different crawling strategies, namely: Breath-First search, Depth-

First search, Greedy algorithm, and Probabilistic algorithm.

To measure the effect of different design decisions in practice, a prototype of each

algorithm is implemented. The implemented prototypes are used to obtain empirical

performance measurements and to refine the algorithms. The ultimate refined algorithm

is used for experimentation with a wide range of applications under different circum-

stances.

This thesis finally includes two theoretical studies of load balancing algorithms and

distributed component-based crawling and sets the stage for future studies.
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Chapter 1

Introduction

A web application is a computer application that uses a web browser to interact with

user. Crawling is the process of exploring the web applications automatically. A web

crawler is a tool that performs crawling. The web crawler aims at discovering the web

pages of a web application by navigating through the application. The web crawler

usually simulates the possible user interactions and can only observe the client-side of

the application. The web crawler can be used to automate testing and indexing of the

application.

In the literature on web-crawling, a web crawler is basically a software that starts

from a set of URLs and downloads all the web pages associated with these URLs. These

initial URLs are called Seed URLs. After fetching a web page associated with a URL, the

URL is removed from the working queue. The web crawler then parses the downloaded

page, extracts the linked URLs that are included, and adds these new URLs to the list

of seed URLs. This process continues iteratively until all the contents reachable from

the seed URLs are reached, or at least one of the resources available exhausts.

The traditional definition of a web crawler assumes that all the content of a web

application is reachable through URLs. Soon in the history of web crawling it became

clear that such web crawlers cannot deal with the complexities added by interactive web

applications that rely on the user input to generate web pages. This scenario often arises

when the web application is an interface to a database and it relies on user input to

retrieve contents from the database. The new field of Deep Web-Crawling was born to

address this issue.

Availability of powerful client-side web-browsers, as well as the wide adaptation to

technologies such as HTML5 and AJAX, gave birth to a new pattern in designing web

1



Introduction 2

applications called Rich Internet Application (RIA). RIAs move part of the computation

from the server to the client. This new pattern of designing web applications led to

complex client side applications that increased the speed and interactivity of the web

application, while it reduced the network traffic per request.

1.1 Motivations for Crawling

There are several important motivations for crawling. The chief application of a web

crawler is to fetch contents of web application. These contents are then indexed and

used by search engines. As the amount of information on the web has been increasing

drastically, web users increasingly rely on search engines to find desired data. In order

for search engines to learn about the new data as it becomes available on the web, the

web crawler has to constantly crawl and update the search engine database. The main

three motivations for crawling are:

• Content indexing for search engines. Every search engine requires a web crawler

to fetch the data from the web.

• Automated testing and model checking of the web application

• Automated security testing and vulnerability assessment. Many web applications

use sensitive data and provide critical services. To address the security concerns

for web applications, many commercial and open-source automated web application

security scanners have been developed. These tools aim at detecting possible issues,

such as security vulnerabilities and usability issues, in an automated and efficient

manner[10, 40]. They require a web crawler to discover the states of the application

scanned.

1.2 Challenges Faced

Despite many added values, RIAs introduced some unique challenges to web crawlers. In

a RIA, user interaction often results in execution of client side events. Execution of an

event in a RIA often changes the state of the web application on the client side, which

is represented in the form of a tree with an application programming interface called

Document Object Model (DOM)[77]. DOM both represents the structure of the applica-

tion in the web browser and define methods to manipulate this structure. Henceforth,
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in this thesis we use DOM exclusively to refer to the structure and not the methods.

Events that change the state of DOM does not necessarily change the URL. Traditional

web crawlers rely heavily on the URL and changes to the DOM that do not alter the

URL are invisible to them. Although deep web crawling increased the ability of the

web crawlers to retrieve data from web applications, it fails to address changes to DOM

that do not affect the URL. The new and recent field of RIA web-crawling attempts to

address the problem of RIA crawling.

In a traditional web application a page is identified by a URL and has only a single

state per URL. A transition between two states of the application is defined by a link

that contains a URL which specifies the target state [96]. Therefore there is a one-to-one

correspondence between the states of the application and its URLs.

The basic issues of crawling RIAs are well explained in [85]. In these applications

a client-side page, usually associated with a single URL, often contains executable code

that may change the state of the application that is seen by the user. This state is

stored within the browser, and is represented and accessed through DOM. Its structure

is encoded in HTML and includes the program fragments executed in response to user

input. Code execution is normally triggered by events invoked by the user, such as mouse

over or clicking events.

To ensure that a crawler finds all of application contents it should execute all the

events in all of the reachable application states. To do so, the crawler starts from the

initial DOM executing events one at the time, and monitoring the state of the DOM.

Upon discovery of a new DOM, it adds the newly discovered DOM to its working queue

and marks the DOM events for future execution. Thus under the assumption that a RIA

is deterministic, the problem of crawling is reduced to the problem of executing all events

in the application across all reachable DOMs. The basic problem with this approach is

that the execution of all events can take a very long time and it is the intention of this

thesis to reduce it.

1.3 Solution Proposed

One can reduce the time it takes to crawl a RIA by executing the crawl in parallel

on multiple computational units. By considering each DOM state as a vertex and each

client-side event as an edge, the problem of the parallel crawling of a RIA is mapped to the

problem of parallel directed graph exploration. This thesis proposes several algorithms

to accomplish this task and evaluates their merit experimentally. We then explain some
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of the practical aspects and challenges faced in designing a distributed RIA crawler.

In the context of RIA web crawling, a task is a unit of work to be performed by a

crawler node. In the context of RIA crawling, a task is the responsibility to execute one

client side event in a certain application state. In order for the crawler to perform the

task, it first has to reach the target application state. Thus a task comprises a path from

a seed URL to the target application state as well as the event to be executed in that

state.

This thesis provides the following contributions:

• New partitioning algorithms based on client-side events: To crawl a RIA in parallel,

it is essential to execute all client-side events, without work duplication. This thesis

introduces a concept called partitioning algorithm. The partitioning algorithm

enables the nodes to crawl the RIA autonomously and independent of each other,

while all client-side events are executed and no work is duplicated.

• Distributed client-server architectures for RIA crawling: A distributed client-server

architecture was introduced to crawl RIAs in parallel, called Dist-RIA. In the Dist-

RIA architecture nodes act autonomously deciding tasks to do. This architecture

works with breath-first search strategy and requires a low network bandwidth.

• Distributed job-dispatching architectures for RIA crawling: A distributed job-

dispatching architecture was introduced to crawl RIAs in parallel, called Client-

Server. In the client-server architecture a single node calculates the tasks to do

and dispatches them to the crawling nodes. The architecture can accommodate

any crawling strategy including the probabilistic and greedy strategies.

• Distributed peer-to-peer architectures for RIA crawling: A distributed peer-to-peer

architecture to crawl RIAs in parallel is introduced. Similar to the client-server

architecture, the peer-to-peer architecture can accommodate any crawling strategy

including the probabilistic and greedy strategies.

• Implementation and experimental evaluation of the proposed systems. The client-

server and the peer-to-peer architectures are compared against each other using

breath-first and greedy search strategies. Four strategies of breath-first, depth-

first, greedy and probabilistic search strategies, are incorporated into the superior

architecture. The four distributed strategies are studied across a set of RIAs to

measure the performance and scalability of the proposed architecture. Among
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the crawling strategies, the greedy and probabilistic strategies are the superior

strategies.

• Load balancing mechanisms to alleviate bottlenecks: Experiments with the pro-

posed architectures prove the need for balancing the workload among the nodes.

This thesis discusses two load-balancing algorithms introduced in the literature of

web-crawling and explains how to utilize them in the context of RIA crawling. It

also introduced two new load-balancing algorithms.

• Parallelization of component based crawling strategy: Component-based crawling

is a recent and promising strategy to crawl RIAs. This strategy detects independent

sections of the DOM (called widgets) and crawl each widget independent of other

widgets. The final contribution of this thesis is how to distribute component-based

strategy and run it in parallel.

1.4 Publications and Patents

This thesis has contributed to the following publications:

• SeyedM. Mirtaheri, GregorV. Bochmann, Guy-Vincent Jourdan, and IosifViorel

Onut. PDist-RIA Crawler: A Peer-to-Peer Distributed Crawler for Rich Internet

Applications, volume 8787 of Lecture Notes in Computer Science. Springer Inter-

national Publishing, 2014

• S. Choudhary, E. Dincturk, Seyed Mirtaheri, G. v. Bochmann, G.-V. Jourdan, and

V. Onut. Model-based rich internet applications crawling: “menu” and “probabil-

ity” models. In Journal of Web Engineering, volume 13, pages 243 – 262, 2014

• SeyedM. Mirtaheri, Gregor von Bochmann, Guy-Vincent Jourdan, and IosifViorel

Onut. Gdist-ria crawler: A greedy distributed crawler for rich internet applications.

In Guevara Noubir and Michel Raynal, editors, Networked Systems, Lecture Notes

in Computer Science, pages 200–214. Springer International Publishing, 2014

• Seyed M Mirtaheri, Mustafa Emre Dinçtürk, Salman Hooshmand, Gregor V Bochmann,

Guy-Vincent Jourdan, and Iosif Viorel Onut. A brief history of web crawlers. In

Proceedings of the 2013 Conference of the Center for Advanced Studies on Collab-

orative Research, pages 40–54. IBM Corp., 2013
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• Seyed M Mirtaheri, Di Zou, Gregor V Bochmann, Guy-Vincent Jourdan, and

Iosif Viorel Onut. Dist-ria crawler: A distributed crawler for rich internet appli-

cations. In P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2013

Eighth International Conference on, pages 105–112. IEEE, 2013

• Suryakant Choudhary, Emre Dincturk, Seyed. Mirtaheri, Guy-Vincent Jourdan,

Gregor. Bochmann, and Iosif Onut. Building rich internet applications models:

Example of a better strategy. In Florian Daniel, Peter Dolog, and Qing Li, editors,

Web Engineering, volume 7977 of Lecture Notes in Computer Science, pages 291–

305. Springer Berlin Heidelberg, 2013

• Suryakant Choudhary, Mustafa Emre Dincturk, Seyed M. Mirtaheri Gregor von

Bochmann, Guy-Vincent Jourdan, and Iosif-Viorel Onut. Crawling rich internet

applications: The state of the art. In Proceedings of the 2012 Conference of the

Center for Advanced Studies on Collaborative Research, CASCON ’12, Riverton,

NJ, USA, 2012. IBM Corp

This thesis, also, contributed to the following patent applications:

• I.V. Onut, K.A. Ayoub, P. Ionescu, G.v. Bochmann, G.V. Jourdan, M.E Dincturk,

and S.M. Mirtaheri. Representation of an element in a page via an identifier.

[Patent]

• Jourdan-G.-V. Bochmann G.v. Mirtaheri S.M. Onut, I.V. A method of partitioning

the crawling space of a rich internet application for distributed crawling, 2012.

[Patent]

• Brake-N. Ionescu P. Smith D. Dincturk M.E. Mirtaheri S.M. Jourdan G.-V. Bochmann G.v.

Onut, I.V. A method of identifying equivalent javascript events on a page, 2012.

[Patent]

1.5 Outline of the thesis

The rest of this thesis is organized as follows:

• In Chapter 2, we state some of the challenges faced to design a crawler for RIAs.

In this Chapter we also specify the scope of the project and the subset of problems

that we are trying to solve.
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• In Chapter 3, we summarize the history of parallel web-crawling, the current state

of art, and the related works. Using the surveyed literature we show the taxonomy

of web crawlers. In this chapter, we also give a brief introduction to distributed

systems.

• In Chapter 4, a client-server communication protocol is introduced. This protocol

is used to construct Dist-RIA architecture. Dist-RIA architecture parallelizes the

breath-first search crawling strategy. It uses a primitive partitioning algorithm to

partition the tasks among the nodes locally and autonomously, and only broadcasts

the knowledge of states among the working nodes.

• In Chapter 5, some implementation improvements are proposed. The proposed

changes are due to our experiments with Dist-RIA architecture.

• In Chapter 6, two more crawling architectures, client-server and peer-to-peer ar-

chitectures, are introduced:

– In the client-server architecture a centralized unit calculates the tasks and

assign them to working nodes. In this architecture only the centralized unit

has the knowledge of transitions and the states and the architecture results in

a minimum network traffic.

– In the peer-to-peer architecture a Peer-to-Peer communication protocol is

used. Nodes in the peer-to-peer architecture first constructs an efficient Span-

ning Tree and then uses it to broadcast the knowledge of states and transitions.

• In Chapter 7, the peer-to-peer and the client-server architectures are used to crawl

a set of six RIAs. Performance benchmarks of the architectures are shown in this

chapter, and the efficiency of the architectures are explained.

• Finally, in Chapter 8, we conclude this thesis and talk about some of the areas of

future work in the topic of distributed RIA Crawling.

This thesis also contains the following appendices:

• In Appendix A, load-balancing algorithms in the context of RIA crawling are in-

troduced. In this appendix, two load-balancing algorithms for distributed crawling

of traditional web applications in the literature are shown. These two models are

adopted to RIA crawling. Additionally, two new models of task distribution are

introduced.
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• In Appendix B, a distributed component-based crawling algorithm to parallelized

component-based crawling strategy is introduced. Implementation of the intro-

duced concepts in this appendix, and experimenting with them are left for the

future studies.

• In Appendix C, experimental results for cost of discovering application states using

Breath-First and Greedy search strategies are presented.

• Finally, in Appendix D, experimental results for cost of discovering application

states using Peer-to-Peer architecture are presented.



Chapter 2

Problem Statement and Scope of

the Project

If an application state is considered to represent a vertex, and a client-side event consid-

ered to represent a transition between two vertices or a self-loop, a web application can

be modelled as a directed graph. Using this technique the World Wide Web can also be

modelled as a forest of such graphs. Thus, the problem of Web crawling is reduced to

the problem of discovering all the vertices in this forest.

Web crawlers have always been challenged by the large size of the applications they

crawl and tried to reduce the time it takes to crawl them. Crawling literature is rich

in addressing efficiency and scalability in the context of traditional internet applications

(i.e. the web applications where there is a one to one relation between the state of the

application and its URL). The efficiency and scalability of crawling RIAs however is

largely missing from the web crawling literature. This thesis targets reducing the time

it takes to crawl RIAs and thus increasing its scalability through parallel processing and

distributed computing.

2.1 Problem Definition

A web application can be modelled as a directed graph, and the World Wide Web can

be modelled as a forest of such graphs. The problem of Web crawling is the problem of

discovering all the nodes in this forest. In the application graph, each node represents a

state of the application and each edge a transition from one state to another.

Web crawling problem is studied extensively in the literature. This thesis concentrates

9
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on two aspects of the problem:

• Crawling Rich Internet Applications (RIAs): Crawling traditional web applications,

where there is a one-to-one correspondance between the state of the application and

its URL is well studied. Crawling RIAs, on the other hand, is a recent and nascent

problem. RIAs take advantage of client side events. These events introduce partial

state update on the client side of the application; potentially without changing

the URL. Therefore, in a RIA an application state may not be reachable directly.

This complication factor makes the cost of reaching an application state in a RIA

potentially higher.

• Distributed Web Crawling: This thesis explores utilizing parallel processing tech-

niques to reduce the time it takes to crawl a RIA. Recently, several studies con-

sidered crawling RIAs sequentially. This thesis studies different architectures and

algorithms to parallelize some of these sequential algorithms.

2.2 Constraints and Scope

Any solution to the problem of distributed RIA crawling, can be broken down into smaller

subproblems. These subproblems represent the design decisions that have to be made

before designing the crawler. Some of the design decisions we considered are:

• Crawling Strategy : There are two ways to reduce the time it takes to crawl a

RIA: Using smart algorithms through crawling strategy and using multiple nodes

to achieve parallelism. In recent years, Model Based Crawling (MBC) strategy has

been studied extensively[13, 14, 31, 37]. Prior to these recent works, only depth-

first-search, breath-first-search, and greedy crawling strategies have been described

in the literature[17, 102]. Our team introduced a few new models including:

– The Hypercube model[13, 36]: This model takes advantage of event ordering

and when the ordering does not matter it creates an efficient model of the

application. Based on the created model, it crawls the application efficiently.

– The greedy strategy[102]: This strategy always find the closest un-executed

event and executes it.

– The probabilistic strategy[36, 38]: This strategy keeps statistics about the

events, and gives priority to the events that leads to the discovery of new

states.
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– The menu model[29]: This model assumes that an event always lead to the

same target state. In the other words, if the same event is seen in two different

states, irrelevant of the source states, both events lead to the same target state.

This assumption is used to discover new states as early as possible during the

crawl.

Empirical measurements indicates that among these models, the greedy and the

probabilistic models are the superior ones[31, 36]. These two models often surpass

other models both in discovering states as early as possible, and in reducing the

overall time of crawl. Thus, this thesis only focuses on these two models. We also

study breath-first and depth-first strategies as the base case.

In addition to the above-mentioned strategies, recently Moosavi[93] introduced

component-based MBC. This model can detect client widgets and the indepen-

dent parts in the client heuristically. By detecting this independence, the crawler

requires to execute substantially less events in order to crawl the website in com-

parison to any other strategy. To set the stage for future works in this area, an

abstract algorithm to parallelize this strategy is introduced too.

• The extent and frequency of sharing information: An important aspect of the

parallel algorithm to crawl RIAs is the extent of sharing information among the

crawling nodes. At one end of the spectrum, crawling nodes could share minimal

amount of information among one another, such as the tasks to be done, or the

discovered states. At the other end of spectrum, nodes could share all of the

information they discover, including the transitions among the nodes. Another

important aspect is the frequency of sharing information among the nodes. Nodes

can share newly discovered information as soon as they become available, or they

can do it in certain intervals. The extent and the frequency of sharing information

effects the performance of the algorithm. This thesis inspects the effect of these

two parameters in the performance of the web crawler.

• Mainframe vs Commodity Hardware: In designing a parallel algorithm to crawl

RIAs, one can take advantage of mainframes and other expensive equipments. The

other less costly alternative is to break down the computation over a set of cheap

commodity computers. This thesis takes advantage of the latter approach and is

designed to run on commodity computers.



Problem Statement and Scope of the Project 12

• System Characteristics : Any communication protocol makes certain assumptions

about the underlying communication infrastructure and the working nodes. This

thesis assumes that:

– Underlying communication medium is reliable and there are no messages lost.

– Computational units are reliable and they do not die unexpectedly.

• Scale: There are assumptions about the size of the application concerning the

number of states in the application and the number of transitions among those

states, as well as the number of available computational resources. This thesis

assumes that on average there are more transitions per state than the number of

available computational units. In other words, this thesis addresses the problem of

crawling a dense application over a small number of computers.

2.2.1 Assumptions about target RIA

We make two assumptions about the target RIA:

Deterministic RIAs

From the point of view of the crawler, a RIA can be deterministic or non-deterministic.

The web crawler often does not have access to the state of the server, and can only

capture the client side state of the application. Because the crawler cannot capture the

state of the server, performing a specific event may lead to different application states

depending on the server state. Thus even though a web application is deterministic as

a whole, because the crawler only has access to the client side state of the application,

and has no access to the state of the server, the RIA may seem to be non-deterministic

to the crawler.

Finding all application states of an unknown non-deterministic RIA is not feasible.

Duda et. al.[41] suggest limiting the number of JavaScript events executed to avoid ex-

plosion of states. The suggested technique achieves a partial crawl of non-deterministic

RIA in a finite time. The purpose of this thesis is to achieve full coverage of a given RIA

in finite time, thus we only target deterministic finite RIAs.

We define a deterministic application as follows:A RIA is deterministic if and only

if given a seed URL and a chain of JavaScript events, by loading the seed URL and

executing the chain of events sequentially the crawler always lands on the same target

state.
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Given that the target RIA is deterministic and finite, we assume that there exists

a finite set of events, and each application state is reachable by executing one of these

events from some application state. In this model, it is assumed that all application states

are reachable from the seed URL. Open fields such as text boxes present a challenge to

this assumption. Assigning meaningful data to open fields has been the topic of extensive

research in the field of deep-web crawling [8, 70, 73, 94, 105]. Our crawler uses a finite

dictionary to assign values to open fields. Taking advantage of existing algorithms in

assigning values to open fields is the topic of study in deep-web crawling and is beyond

the scope of this thesis.

Client-side Events

We assume absence of external events. Newly introduced in HTML5 are Web Sockets [46].

These sockets allow the server to contact the web client. These special events are triggered

by the environment and interfere with the assumption of deterministic RIA made by the

crawler.

The functionality of the Web Sockets is achievable in HTML4 through Comet [110].

Comet withholds the HTTP request for a period of time. If during this time a message

becomes available for the client, the server responds with the message to the client. If the

period expires, the server returns the HTTP request and asks the client to send another

request. In this model a never ending dialog continues between client and the server that

allows to pass messages to the client in real time.

Existence of Web Sockets or Comet does not necessarily make an application inde-

terministic. Assuming that the crawler can capture these events, and that given these

events deterministically change the state of the application, these events can be simply

modelled as external events. These two assumptions, however, are hard to assert and

verify. This thesis, thus, assumes that the target RIA does not use these functionalities.

In other words, this thesis assumes that all events are triggered directly by the user, and

no external events interfere with the state of the application.

In addition to the absence of external events, we only focus on JavaScript events and

leave other client side events such as Flash events to the future studies.

2.3 Issues to be addressed

In addition to the design decisions states earlier, two more issues remain to be addressed:
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• Study relative cost and trade-offs to be made to adapt different search

strategies: As explained in Section 2.2, this thesis intends to address distributed

crawling of RIAs with breath-first, depth-first, the greedy and the probabilistic

crawling strategies. While the first two algorithms are easy to implement, the

second two algorithms requires the knowledge of all transitions among different

states, in order to calculate the next step in the algorithm. This thesis measures

the cost of transferring such data among the nodes and shows the results of the

trade-offs made.

• Design a series of partitioning and load-balancing algorithms: There are

different approaches to distribute workload among the nodes. On one side of the

spectrum, a static distribution allows each node to determine its share of the work

autonomously and locally. On the other side of the spectrum, nodes can completely

rely on a centralized unit to assign them tasks and do not participate in the process

of assignment at all. This thesis studies these two approaches as well as another

hybrid approach in between the two, and an adaptive distribution approach.



Chapter 3

Literature Review

This chapter reviews the relevant literature to designing a distributed RIA web crawler.

It then, briefly reviews relevant sectors of distributed computing. Terminology and eval-

uation criteria defined in this chapter are used in the rest of the thesis.

3.1 Web Crawlers

In the literature on web-crawling, a web crawler is basically software that starts from a

set of seed URLs, and downloads all the web pages associated with these URLs. After

fetching a web page associated with a URL, the URL is removed from the working queue.

The web crawler then parses the downloaded page, extracts the linked URLs from it, and

adds to the list of seed URLs. This process continues iteratively until all of the contents

reachable from seed URLs are reached.

The traditional definition of a web crawler assumes that all the content of a web

application is reachable through URLs. Soon in the history of web crawling it became

clear that such web crawlers cannot deal with the complexities added by interactive web

applications that rely on user input to generate web pages. This scenario often arises

when the web application is an interface to a database and it relies on user input to

retrieve contents from the database. The new field of Deep Web-Crawling was born to

address this issue.

Availability of powerful client-side web-browsers, as well as the wide adaptation to

technologies such as HTML5 and AJAX, gave birth to a new pattern in designing web

applications called Rich Internet Application (RIA). RIAs move part of the computation

from the server to the client. This new pattern led to complex client side applications

15
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that increased the speed and interactivity of the application, while reducing the network

traffic per request.

Despite the added values, RIAs introduced some unique challenges to web crawlers.

In a RIA, user interaction often results in execution of client side events. Execution of

an event in a RIA often changes the state of the web application on the client side, which

is represented in the form of a Document Object Model (DOM)[77]. This change in the

state of DOM does not necessarily mean changing the URL. Traditional web crawlers

rely heavily on the URL and changes to the DOM that do not alter the URL are invisible

to them. Although deep web crawling increased the ability of the web crawlers to retrieve

data from web applications, it fails to address changes to DOM that do not affect the

URL. The new and recent field of RIA web-crawling attempts to address the problem of

RIA crawling.

3.1.1 Evolution of Web Crawling Problem Definition

As web applications evolved, the definition of the state of the application evolved as

well. In the context of traditional web applications, states in the application graph are

pages with distinct URLs and edges are hyperlinks between pages i.e. there exists an

edge between two nodes in the graph if there exist a link between the two pages. In the

context of deep web crawling, transitions are constructed based on users input. This is

in contrast with hyperlink transitions which always redirect the application to the same

target page. In a deep web application, any action that causes submission of a form is a

possible edge in the graph.

In RIAs, the assumption that pages are nodes in the graph is not valid, since the client

side code can change the application state without changing the page URL. Therefore

nodes here are application states denoted by their DOM, and edges are not restricted

to forms that submit elements, since each element can communicate with the server and

partially update the current state. Edges, in this context, are client side actions (e.g. in

JavaScript) assigned to DOM elements and can be detected by web crawler. Unlike the

traditional web applications where jumps to arbitrary states are possible, in a RIA, the

execution of sequence of events from the current state or from a seed URL is required to

reach a particular state.

The three models can be unified by defining the state of the application based on

the state of the DOM as well as other parameters such as the page URL, rather than

the URL or the DOM alone. A hyperlink in a traditional web application does not
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Table 3.1: Different categories of web crawlers

Category Input Application graph components

Traditional Set of seed URLs

Vertices are pages with distinct URL and a di-

rected edge exist from page p1 to page p2 if there

is a hyperlink in page p1 that points to page p2

Deep

Set of Seed URLs,

user context spe-

cific data, domain

taxonomy

Vertices are pages and a directed edge exists be-

tween page p1 to page p2 if submitting a form in

page p1 gets the user to page p2.

RIA A starting page

Vertices are DOM states of the application and a

directed edge exists from DOM d1 to DOM d2 if

there is a client-side JavaScript event, detectable

by the web crawler, that if triggered on d1 changes

the DOM state to d2

Unified

Model
A seed URL

Vertices are calculated based on DOM and the

URL. An edge is a transition between two states

triggered through client side events. Redirecting

the browser is a special client side event.
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only change the page URL, but it also changes the state of the DOM. In this model

changing the page URL can be viewed as a special client side event that updates the

entire DOM. Similarly, submission of a HTML form in a deep web application leads to

a particular state of DOM once the response comes back from the server. In both cases

the final DOM states can be used to enumerate the states of the application. Table 3.1

summarizes different categories of web crawlers.

3.1.2 Requirements

Several design goals have been considered for web crawlers. Coverage and freshness are

among the first [96]. Coverage measures the relative number of pages discovered by the

web crawler. Ideally given enough time the web crawler has to find all pages and build

the complete model of the application. This property is referred to as Completeness.

Coverage captures the static behaviour of traditional web applications well. It may fail,

however, to capture the performance of the web crawler in crawling dynamically created

web pages. The search engine index has to be updated constantly to reflect changes in

web pages created dynamically. The ability of the web crawler to retrieve latest updates

is measured through freshness.

An important and old issue in designing web crawlers is called politeness [59]. Early

web crawlers had no mechanism to stop them from flooding a server with many requests.

As a result while crawling a website they could have lunched an inadvertent Denial of

Service(DoS) attack and exhaust the target server resources to the point that it would

interrupt normal operation of the server. Politeness was the concept introduced to put a

cap on the number of requests sent to a web-server per unit of time. A polite web crawler

avoids launching an inadvertent DoS attack on the target server. Another old problem

that web crawlers faced are traps. Traps are seemingly large set of websites with arbitrary

data that are meant to waste the web crawler resources. Integration of black-lists allowed

web crawlers to avoid traps. Among the challenges web crawlers faced in the mid 90s

was scalability [23]. Throughout the history of web-crawling, the exponential growth of

the web and its constantly evolving nature has been hard to match by web crawlers. In

addition to these requirements, the web crawler’s model of application should be correct

and reflect true content and structure of the application.

In the context of deep-web crawling Raghavan and Garcia-Molina[105] suggest two

more requirements. In this context, Submission efficiency is defined as the ratio of

submitted forms leading to result pages with new data; and Lenient submission efficiency



LiteratureReview 19

measures if a form submission is semantically correct (e.g., submitting a company name

as input to a form element that was intended to be an author name)

In the context of RIA crawling a non-functional requirement considered by Kamara

et al. [14] is called efficiency. Efficiency means discovering valuable information as soon

as possible. For example states are more important than transitions and should be found

first instead of finding transitions leading to already known states. This is particularly

important if the web crawler will perform a partial crawl rather than a full crawl.

This chapter defines web crawling and its requirements, and based on the defined

model classifies web crawlers.

A brief history of traditional web crawlers1, deep web crawlers2, and RIA crawlers3

is presented in Sections 3.2, 3.3, and 3.4, respectively. Based on this brief history and

the model defined, taxonomy of web crawling is then presented in section 3.5. Section

3.6 presents some open questions and future works in web crawling.

3.2 Crawling Traditional Web Applications

Web crawlers were written as early as 1993. This year gave birth to four web crawlers:

World Wide Web Wanderer, Jump Station, World Wide Web Worm[79], and RBSE

spider. These four spiders mainly collected information and statistic about the web

using a set of seed URLs. Early web crawlers iteratively downloaded URLs and updated

their repository of URLs through the downloaded web pages.

The next year, 1994, two new web crawlers appeared: WebCrawler and MOMspider.

In addition to collecting stats and data about the state of the web, these two web crawlers

introduced concepts of politeness and black-lists to traditional web crawlers. WebCrawler

is considered to be the first parallel web crawler by downloading 15 links simultaneously.

From World Wide Web Worm to WebCrawler, the number of indexed pages increased

from 110,000 to 2 million. Shortly after, in the coming years a few commercial web

crawlers became available: Lycos, Infoseek, Excite, AltaVista and HotBot.

In 1998, Brin and Page[21] tried to address the issue of scalability by introducing

a large scale web crawler called Google. Google addressed the problem of scalability in

several ways: Firstly it leveraged many low level optimizations to reduce disk access time

through techniques such as compression and indexing. Secondly, and on a higher level,

1See Olston and Najork[96] for a survey of traditional web crawlers.
2See He et al. [56] for a survey of deep web crawlers.
3See Choudhary et al. [31] for a survey of RIA crawlers.
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Google calculated the probability of a user visiting a page through an algorithm called

PageRank. PageRange calculates the probability of a user visiting a page by taking into

account the number of links that point to the page as well as the style of those links.

Having this probability, Google simulated an arbitrary user and visited a page as often

as the user did. Such approach optimizes the resources available to the web crawler

by reducing the rate at which the web crawler visits unattractive pages. Through this

technique, Google achieved high freshness. Architecturally, Google used a master-slave

architecture with a master server (called URLServer) dispatching URLs to a set of slave

nodes. The slave nodes retrieve the assigned pages by downloading them from the web.

At its peak, the first implementation of Google reached 100 page downloads per second.

The issue of scalability was further addressed by Allan Heydon and Marc Najork

in a tool called Mercator [59] in 1999. Additionally Mercator attempted to address the

problem of extendability of web crawlers. To address extensibility it took advantage of a

modular Java-based framework. This architecture allowed third-party components to be

integrated into Mercator. To address the problem of scalability, Mercator tried to solve

the problem of URL-Seen. The URL-Seen problem answers the question of whether or

not a URL was seen before. This seemingly trivial problem gets very time-consuming as

the size of the URL list grows. Mercator increased the scalability of URL-Seen by batch

disk checks. In this mode hashes of discovered URLs got stored in RAM. When the size

of these hashes grows beyond a certain limit, the list was compared against the URLs

stored on the disk, and the list itself on the disk was updated. Using this technique,

the second version of Mercator crawled 891 million pages. Mercator got integrated into

AltaVista in 2001.

IBM introduced WebFountain[43] in 2001. WebFountain was a fully distributed web

crawler and its objective was not only to index the web, but also to create a local

copy of it. This local copy was incremental meaning that a copy of the page was kept

indefinitely on the local space, and this copy got updated as often as WebFountain visited

the page. In WebFountain, major components such as the scheduler were distributed and

the crawling was an ongoing process where the local copy of the web only grew. These

features, as well as deployment of efficient technologies such as the Message Passing

Interface (MPI), made WebFountain a scalable web crawler with high freshness rate. In

a simulation, WebFountain managed to scale with a growing web. This simulated web

originally had 500 million pages and it grew to twice its size every 400 days.

In 2002, Polybot [111] addressed the problem of URL-Seen scalability by enhancing

the batch disk check technique. Polybot used a Red-Black tree to keep the URLs and
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when the tree grows beyond a certain limit, it was merged with a sorted list in main

memory. Using this data structure to handle the URL-Seen test, Polybot managed to

scan 120 million pages. In the same year, UbiCrawler [20] dealt with the problem of URL-

Seen with a different, more peer-to-peer (P2P), approach. UbiCrawler used consistent

hashing to distribute URLs among web crawler nodes. In this model no centralized

unit calculates whether or not a URL was seen before, but when a URL is discovered

it is passed to the node responsible to answer the test. The node responsible to do this

calculation is detected by taking the hash of the URL and map it to the list of nodes.

With five 1GHz PCs and fifty threads, UbiCrawler reached a download rate of 10 million

pages per day.

In addition to Polybot and UbiCrawler, in 2002 Tang et al. [115] introduced pSearch.

pSearch uses two algorithms called P2P Vector Space Model (pVSM) and P2P Latent

Semantic Indexing (pLSI) to crawl the web on a P2P network. VSM and LSI in turn use

vector representation to calculate the relation between queries and the documents. Ad-

ditionally pSearch took advantage of Distributed Hash Tables (DHT) routing algorithms

to address scalability.

Two other studies used DHTs over P2P networks. In 2003, Li et al. [68] used this

technique to scale up certain tasks such as clustering of contents and bloom filters. In

2004, Loo et al. [72] addressed the question of scalability of web crawlers and used the

technique to partition URLs among the crawlers. One of the underlying assumptions

in this work is the availability of high speed communication medium. The implemented

prototype requested 800,000 pages from more than 70,000 web crawlers in 15 minutes.

In 2005, Exposto et al. [45] augmented partitioning of URLs among a set of crawling

nodes in a P2P architecture by taking into account servers’ geographical location. Such

an augmentation reduced the overall time of the crawl by allocating target servers to a

node physically closest to them.

In 2008, an extremely scalable web crawler called IRLbot ran for 41.27 days on a

quad-CPU AMD Opteron 2.6 GHz server and it crawled over 6.38 billion web pages[118].

IRLbot primarily addressed the URL-Seen problem by breaking it down into three sub-

problems: check, update and check+update. To address these sub-problems, IRL-

bot introduced a framework called Disk Repository with Update Management (DRUM).

DRUM optimizes disk access by segmenting the disk into several disk buckets. For each

disk bucket, DRUM also allocates a corresponding bucket on the RAM. Each URL is

mapped to a bucket. At first a URL was stored in its RAM bucket. Once a bucket on

the RAM is filled, the corresponding disk bucket is accessed in batch mode. This batch
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mode access, as well as the two-stage bucketing system used, allowed DRUM to store a

large number of URLs on the disk such that its performance would not degrade as the

number of URLs increases.

3.3 Crawling Deep Web

As server-side programming and scripting languages, such as PHP and ASP, got momen-

tum, more and more databases became accessible online through interacting with a web

application. The applications often delegated creation and generation of contents to the

executable files using Common Gateway Interface (CGI). In this model, programmers

often hosted their data on databases and used HTML forms to query them. Thus a

web crawler cannot access all of the contents of a web application merely by following

hyperlinks and downloading their corresponding web page. These contents are hidden

from the web crawler point of view and thus are referred to as deep web[56].

In 1998, Lawrence and Giles[66] estimated that 80 percent of web contents were

hidden in 1998. Later in 2000, BrightPlanet suggested that the deep web contents is

500 times larger than what surfaces through following hyperlinks (referred to as shallow

web)[16]. The size of the deep web is rapidly growing as more companies are moving

their data to databases and set up interfaces for the users to access them[16].

Only a small fraction of the deep web is indexed by search engines. In 2007, He et

al. [56] randomly sampled one million IPs and crawled these IPs looking for deep webs

through HTML form elements. The study also defined a depth factor from the original

seed IP address and constrained itself to depth of three. Among the sampled IPs, 126

deep web sites were found. These deep websites had 406 query gateways to 190 databases.

Based on these results with 99 percent confidence interval, the study estimates that at

the time of that writing, there existed 1, 097, 000 to 1, 419, 000 database query gateways

on the web. The study further estimated that Google and Yahoo search engines each

have visited only 32 percent of the deep web. To make the matters worse the study

also estimated that 84 percent of the covered objects overlap between the two search

engines, so combining the discovered objects by the two search engines does not increase

the percentage of the visited deep web by much.

The second generation of web crawlers took the deep web into account. Information

retrieval from the deep web meant interacting with HTML forms. To retrieve information

hidden in the deep web, the web crawler would submit the HTML form many times,

each time filled with a different dataset. Thus the problem of crawling the deep web got
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reduced to the problem of assigning proper values to the HTML form fields.

The open and difficult question to answer in designing a deep web crawler is how

to meaningfully assign values to the fields in a query form[8]. As Barbosa and Freire[8]

explain, it is easy to assign values to fields of certain types such as radio buttons. The

difficult field to deal with, however, is text box inputs. Many different proposals tried to

answer this question:

• In 2001, Raghavan and Garcia-Molina[105] proposed a method to fill up text box

inputs that mostly depend on human output.

• In 2002, Liddle et al. [70] described a method to detect form elements and fabricate

a HTTP GET and POST request using default values specified for each field. The

proposed algorithm is not fully automated and asks for user input when required.

• In 2004, Barbosa and Freire[8] proposed a two phase algorithm to generate textual

queries. The first stage collected a set of data from the website and used that

to associate weights to keywords. The second phase used a greedy algorithm to

retrieve as much contents as possible with minimum number of queries.

• In 2005, Ntoulas et al. [94] further advanced the process by defining three policies for

sending queries to the interface: a random policy, a policy based on the frequency

of keywords in a reference document, and an adaptive policy that learns from the

downloaded pages. Given four entry points, this study retrieved 90 percent of the

deep web with only 100 requests.

• In 2008, Lu et al. [73] map the problem of maximizing the coverage per number of

requests to the problem of set-covering [32] and uses a classical approach to solve

this problem.

3.4 Crawling Rich Internet Applications

Powerful client side browsers and availability of client-side technologies lead to a shift

in computation from the server-side to the client-side. This shift of computation, also

creates contents that are often hidden from traditional web-crawlers and are referred

to as “Client-side hidden-web”[11]. In 2013, Behfarshad and Mesbah studied 500 web-

sites and found that 95 percent of the subject websites contained client-side hidden-web,

and among the 95 percent web-sites, 62 percent of the application states are considered
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client-side hidden-web. Extrapolating these numbers puts almost 59 percent of the web

contents at the time of this writing as client-side hidden-web.

RIA crawling differs from traditional web application crawling in several frontiers.

Although limited, there has been some research focusing on crawling of RIAs. One of

the earliest attempts to crawl RIAs is by Duda et al. [42, 50, 78] in 2007. This work

presents a working prototype of a RIA crawler that indexed RIAs using a Breath-First-

Search algorithm. In 2008, Mesbah et al.[82, 86] introduced Crawljax a RIA crawler that

took the user-interface into account and used the changes made to the user interface to

direct the crawling strategy. Crawljax aimed at crawling and taking a static snapshot

of each AJAX state for indexing and testing. In the same year, Amalfitano et al. [2, 3,

4, 5] addressed automatic testing of RIAs using execution traces obtained from AJAX

applications.

This section surveys different aspects of RIA crawling. Different strategies can be

used to choose an unexecuted event to execute. Different strategies effect how early the

web crawler finds new states and the overall time of crawling. Section 3.4.1 surveys some

of the strategies studied in recent years. Section 3.4.2 explains different approaches to

determine if two DOMs are equivalent. Section 3.4.3 surveys parallelism and concurrency

for RIA crawling. Automated testing and ranking algorithms are explored in Sections

3.4.4 and 3.4.5, respectively.

3.4.1 Crawling Strategy

Until recent years, there has not been much attention on the efficiency requirement, and

existing approaches often use either Breadth-First or a Depth-First crawling strategy.

Breath-First search was first discussed by Duda et al. [42, 50, 78] in 2007 in a tool

called Crawljax. Later improvements on Crawljax enabled it to support different modes

of operation[82, 86]. In one variation, Crawljax performs a depth-search algorithm, it

stores the history of event execution and only executes an event if the event has not been

executed before, regardless of the application state. Another more aggressive mode to

operate forces Crawljax to execute all events and in-effect makes Crawljax to perform

standard depth-first crawling strategy.

In 2008, Amalfitano et al. [2, 3, 4] studied testing and modelling of RIAs through

execution traces. The proposed method acquires user traces manually and constructs

a FSM model of the application[2]. CrawlRIA improved this work and removed the

manual operation to generate the traces[4]. CrawlRIA runs a depth-first search strategy
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to emulate a user session and generate the traces.

Model-based crawling [14] was first introduced by Benjamin et al. in 2011. In this

work, Benjamin et al. introduce a crawling strategy called Hypercube strategy. This

model assumes that the application model is a hypercube, and based on this assumption

chooses the next task to execute. If the application model is not a hypercube, the model

deals with the violation of the assumption and adopts to it[36].

In 2012, Dincturk et al. [38] described Probabilistic Strategy. The probabilistic strat-

egy takes into account the history of event execution, and based on that chooses an

event that maximizes the probability of finding a new application state. In the same

year, another strategy called Greedy Strategy was described by Peng et al. [102]. This

strategy always executes the closest un-executed event. More formally, the algorithm

starts a breath-first search on the unknown application graph from the current state.

This algorithm differs from standard breath-first search that starts the search from the

seed URL. The algorithm continues the search until it finds an un-executed event and

then it executes it.

In 2013, Choudhary et al. [28, 29] described the Menu Strategy. This model-based

crawling strategy assumes that the execution of an event type always leads to the same

target state, regardless of the source state[29]. In the same year, Milani Fard and

Mesbah[87] introduce FeedEx : a greedy algorithm to partially crawl a RIAs. FeedEx

differs from Peng et al. [102] in that: Peng et al. [102] use a greedy algorithm in finding

the closest unexecuted event, whereas FeedEx defines a matrix to measure the impact of

an event and its corresponding state on the crawl. The choices are then sorted and the

most impactful choice will be executed first. Given enough time, FeedEx will discover

the entire graph of the application.

FeedEx defines the impact matrix as a weighted sum of the following four factors:

• Code coverage impact: how much of the application code is being executed.

• Navigational diversity: how diversely the crawler explores the application graph.

• Page structural diversity: how newly discovered DOMs differ from those already

discovered.

• Test model size: the size of the created test model.

In the test cases studied, Milani Fard and Mesbah[87] show that FeedEx beats three

other strategies of Breadth-First search, Depth-First search, and random strategy, in the

above-mentioned four factors.
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3.4.2 DOM Equivalence and Comparison

In the context of traditional web applications it is trivial to determine whether two

states are equal: compare their URLs. This problem is not as trivial in the context of

RIAs. Different chains of events may lead to the same states where the respective DOMs

have only minor differences that do not effect the functionality of the state. Different

researchers address this issue differently. Duda et al. [42, 50, 78] present one of the most

aggressive approaches based on equality of the DOMS. In the presented papers, Duda

et al. consider two states to be equal if the hashes of full DOMs of the two states are

equal[50].

Crawljax [82] offers a less strict algorithm to determine the equality of DOMs. Crawl-

jax calculates the edit distance (so-called Levenstein distance) to measure if two DOMs

are equivalent. The distance is defined as the number of operations required to convert

a DOM to another DOM. If this distance is less than a predefined threshold, two DOMs

are considered equivalent.

Levenstein distance is not transitive. Therefore, Crawljax is susceptible to consider

DOMs that have edit distance of more than the predefined threshold equivalent. Crawljax

was later improved[86] to address this issue. In the new algorithm, a new DOM is

considered to be new if its edit distance is more than the predefined threshold from

all known states. This method solves the transitivity issue, however, it is expensive

computationally, and requires the crawler to store all DOM trees.

Amalfitano et al. [3] describe an approach that ignores the ordering of DOM ele-

ments. In this approach, elements of different DOMs are compared against each other

individually. If the same elements are found in two DOMs, two DOMs are considered

equivalent. Amalfitano et al. also suggest variations of the method by including factors

such as element path before considering the two elements equivalent.

In 2013, Lo et al. [71] in a tool called Imagen, consider the problem of transferring

a JavaScript session between two clients. Imagen improves the definition of client-side

state by adding the following items:

• JavaScript functions closure: JavaScript functions can be created dynamically, and

their scope is determined at the time of creation.

• JavaScript event listeners: JavaScript allows the programmer to register event-

handlers.

• HTML5 elements: Certain elements such as Opaque Objects and Stream Resources.



LiteratureReview 27

These items are not ordinarily stored in the DOM. Imagen uses code instrumentation

and other techniques to add the effect of these features to the state of the application.

To the best of our knowledge, Imagen offers the most powerful definition of a RIA state

at the time of this writing. This definition has not been used by any web crawler yet,

and its effect on the web crawler performance is an open research topic.

3.4.3 Parallel Crawling

To the best of our knowledge, prior to this thesis, the only two algorithms are proposed

to achieve a degree of concurrency:

• Matter [78], proposed to use multiple web crawlers on RIAs that use hyperlinks

together with events for navigation. The suggested method first applies traditional

crawling to find the URLs in the application. After traditional crawling terminates,

the set of discovered URLs are partitioned and assigned to event-based crawling

processes that run independent of each other using their breadth-first strategy.

Since each URL is crawled independently, there is no communication between the

web crawlers.

This approach achieves concurrency at the URL level and assumes that the appli-

cation graph associated with each URL is small and can be crawled with one node.

On the contrary, this thesis focuses on a giant application graph associated with a

single URL and achieves concurrency at the application state level.

• Crawljax[86] used multiple threads for speeding up event-based crawling of a single

URL application. The crawling process starts with a single thread (that uses depth-

first strategy). When a thread discovers a state with more than one event, new

threads are initiated that will start the exploration from the discovered state and

follow one of the unexplored events from there.

This approach relies on the shared memory among the threads and thus it not

scalable. In this thesis we focus on achieving parallelism through independently

running processes that communicate through message passing.
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3.4.4 Automated Testing4

Automated testing of RIAs is an important aspect of RIA crawling. In 2008, Marchetto

et al. [76] used a state-based testing approach based on a FSM model of the application.

The introduced model construction method used static analysis of the JavaScript code

and dynamic analysis of user session traces. Abstraction of the DOM states was used

rather than the DOM states directly in order to reduce the size of the model. This

optimization may require a certain level of manual interaction to ensure correctness of

the algorithm. The introduced model produced test sequences that contained seman-

tically interacting events5. In 2009, Marchetto and Tonella[75] proposed search-based

test sequence generation using hill-climbing rather than exhaustively generating all the

sequences up to some maximum length.

In 2009 and 2010, Crawljax introduced three mechanisms to automate testing of RIAs:

Using invariant-based testing[83], security testing of interactions among web widgets

[108], and regression testing of AJAX applications[108].

In 2010, Amalfitono et al. [4] compared the effectiveness of methods based on execu-

tion traces (user generated, web crawler generated and combination of the two) and ex-

isting test case reduction techniques based on measures such as state coverage, transition

coverage and detecting JavaScript faults. In another study[5], authors used invariant-

based testing approach to detect faults visible on the user-interface (invalid HTML, bro-

ken links, unsatisfied accessibility requirements) in addition to JavaScript faults (crashes)

which may not be visible on the user-interface, but cause faulty behaviour.

3.4.5 Ranking

In the context of traditional web crawling, there is an extensive research in ranking

different pages[96]. The only effort we are aware of to rank resources in the context of

RIA crawling, is done by Frey[50] in 2007. Frey proposes an algorithm called AjaxRank to

rank different states of RIA. AjaxRank adopts PageRank to RIA crawling by considering

DOM states as application states, and transitions as hyperlinks. A connectivity-based

graph is constructed and PageRank algorithm is implemented on top of the graph.

4For a detailed study of web application testing trends from 2000 to 2011 see Garousic et al. [53]
5Two events are semantically interacting if their execution order changes the outcome.
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Figure 3.1: Architecture of a traditional web crawler.

3.5 Taxonomy and Evolution of Web Crawlers

The wide variety of web crawlers available are designed with different goals in mind. This

section classifies and cross-measures the functionalities of different web crawlers based on

the design criteria introduced in Section 3.1.2. It also sketches out a rough architecture

of web crawlers as they evolve. Sections 3.5.1, 3.5.2 and 3.5.3 explain the taxonomy of

traditional, deep, and RIA web crawlers, respectively.

3.5.1 Traditional Web Crawlers

Figure 3.1 shows the architecture of a typical traditional web crawler. In this model

Frontier gets a set of seed URLs. The seed URLs are passed to a module called Fetcher

that retrieves the contents of the pages associated with the URLs from the web. These

contents are passed to the Link Extractor. The latter parses the HTML pages and

extracts new links from them. Newly discovered links are passed to Page Filter and

Store Processor. Store Processor interacts with the database and stores the discovered
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Figure 3.2: Architecture of a deep web crawler.

Input JS-Engine DOM-Seen Event Extractor
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Figure 3.3: Architecture of a RIA web crawler.

Table 3.2: Taxonomy of traditional web crawlers

Study Component Method Goal
WebCrawler,

MOMspider[96]

Fetcher, Fron-

tier, Page filter
Parallel downloading of 15 links, robots.txt, Black-list Scalability, Politeness

Google[21]
Store processor,

Frontier
Reduce disk access time by compression, PageRank

Scalability, Coverage,

Freshness
Mercator[59] URL-Seen Batch disk checks, cache Scalability

WebFountain[43]

Storage proces-

sor, Frontier,

Fetch

Local copy of the fetched pages, Adaptive download

rate, Homogenous cluster as hardware

Completeness, Fresh-

ness, Scalability

Polybot[111] URL-Seen Red-Black tree to keep the URLs Scalability

UbiCrawler[20] URL-Seen P2P architecture Scalability

pSearch[115] Store processor Distributed Hashing Tables (DHT) Scalability
Exposto et

al .[45]
Frontier Distributed Hashing Tables (DHT) Scalability

IRLbotpages[118] URL-Seen Access time reduction by disk segmentation Scalability
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Table 3.3: Taxonomy of deep web crawlers

Study Component Method Goal

HiWe[105]

Select fillable,

Domain Finder,

Submitter, Re-

sponse Analyst

Partial page layout and visual adjacency, Normaliza-

tion by stemming etc, Approximation matching, Manual

domain, Ignore submitting small or incomplete forms,

Hash of visually important parts of the page to detect

errors

Lenient submission

efficiency, Submission

efficiency

Liddle et al. [70]
Select fillable,

Domain Finder

Fields with finite set of values, ignores automatic filling

of text field, Stratified Sampling Method (avoid queries

biased toward certain fields), Detection of new forms in-

side result page, Removal of repeated form Concatena-

tion of pages connected through navigational elements,

Stop queries by observing pages with repetitive partial

results, Detect record boundaries and computes hash

values for each sentence

Lenient submission

efficiency, Submission

efficiency

Barbosa and

Freire[8]

Select fillable,

Domain Finder,

Response Anal-

ysis

Single keyword-based queries, Based on collection data

associate weights to keywords and uses greedy algo-

rithms to retrieve as much contents with minimum num-

ber of queries, Considers adding stop-words to maximize

coverage, Issue queries using dummy words to detect er-

ror pages

Lenient submission

efficiency, Submission

efficiency

Ntoulas et

al. [94]

Select fillable,

Domain Finder

Single-term keyword-based queries, Three policies: ran-

dom, based on the frequency of keyword in a corpus,

and an Adaptive policy that learn from the downloaded

pages. maximizing the unique returns of each query

Lenient submission

efficiency, Submission

efficiency

Lu et al. [73]
Select fillable,

Domain Finder

querying textual data sources, Works on sample that

represents the original data source, Maximizing the cov-

erage

Lenient submission

efficiency, Scalability,

Submission efficiency
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Table 3.4: Taxonomy of RIA web crawlers

Study Component Method Goal

Duda et al. [42,

50, 78]

Strategy, JS-

Engine, DOM-

Seen

Breadth-First-Search, Caching the JavaScript function

calls and results, Comparing Hash value of the full seri-

alized DOM

Completeness, Effi-

ciency

Mesbah et

al. [82, 86]

Strategy, DOM-

Seen

Depth-First-Search, Explores an event only once, New

threads are initiated for unexplored events, Comparing

Edit distance with all previous states

Completeness, State

Coverage Efficiency,

Scalability

CrawlRIA[2, 3,

4, 5]

Strategy, DOM-

Seen

Depth-First strategy (Automatically generated using ex-

ecution traces), Comparing the set of elements, event

types, event handlers in two DOMs

Completeness

Kamara et

al. [12, 14]
Strategy

Assuming hypercube model for the application, Using

Minimum Chain Decomposition and Minimum Transi-

tion Coverage

State Coverage Effi-

ciency

M-Crawler[30] Strategy

Menu strategy which categorizes events after first two

runs, Events which always lead to the same/current

state has less priority, Using Rural-Postman solver to

explore unexecuted events efficiently

State Coverage Effi-

ciency, Completeness

Peng et al. [102] Strategy
Choose an event from current state then from the closest

state

State Coverage Effi-

ciency

AjaxRank[50]
Strategy, DOM-

Seen

The initial state of the URL is given more importance,

Similar to PageRank, connectivity-based but instead of

hyperlinks the transitions are considered hash value of

the content and structure of the DOM

State Coverage Effi-

ciency

Dincturk et

al. [38]
Strategy

Considers probability of discovering new state by an

event and cost of following the path to event’s state

State Coverage Effi-

ciency
Dist-RIA

Crawler[89]
Strategy

Uses JavaScript events to partition the search space and

run the crawl in parallel on multiple nodes
Scalability

Feedex[87] Strategy

Prioritize events based on their possible impact of the

DOM, Considers factors like code coverage, navigational

and page structural diversity

State Coverage Effi-

ciency
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links. Page Filter filters URLs that are not interesting to the web crawler. The URLs

are then passed to URL-Seen module. This module finds the new URLs that are not

retrieved yet and passes them to Fetcher for retrieval. This loop continues until all the

reachable links are visited.

Table 3.2 summarizes the design components, design goals and different techniques

used by traditional web crawlers.

3.5.2 Deep Web Crawlers

Figure 3.2 shows the architecture of a typical deep web crawler. In this model Select

Fillable gets as input a set of seed URLs, domain data, and user specifics. Select Fillable

then chooses the HTML elements to interact with. Domain Finder uses these data to

fill up the HTML forms and passes the results to Submitter. Submitter submits the form

to the server and retrieves the newly formed page. Response Analyser parses the page

and, based on the result, updates the repository; and the process continues.

Table 3.3 summarizes the design components, design goals and different techniques

used by deep web crawlers.

3.5.3 RIA Web Crawlers

Figure 3.3 shows the architecture of a typical RIA web crawler. JS-engine starts a virtual

browser and runs a JavaScript engine. It then retrieves the page associated with a seed

URL and loads it through the virtual browser. The constructed DOM is passed to the

DOM-Seen module to determine if this is the first time the DOM is seen. If so, the DOM

is passed to Event Extractor to extract the JavaScript events from it. The events are

then passed to the Strategy module. This module decides which event to execute. The

chosen event is passed to JS-Engine for further execution. This process continues until

all reachable states are seen.

Table 3.4 summarizes the design components, design goals and different techniques

used by RIA web crawlers.

3.6 Some Open Questions in Web-Crawling

Traditional web crawling and its scalability has been the topic of extensive research.

Similarly, deep-web crawling was addressed in great detail. RIA crawling, however, is a
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new and open area for research. Some of the open questions in the field of RIA crawling

are the following:

• Model based crawling : The problem of designing an efficient strategy for crawling a

RIA can be mapped to a graph exploration problem. The objective of the algorithm

is to visit every node at least once in an unknown directed graph by minimizing

the total sum of the weights of the edges traversed. This objective discovers all

application states. The offline version of this problem, where the graph is known

beforehand, is called the Asymmetric Traveling Salesman Problem (ATSP) which

is NP-Hard. Although there are some approximation algorithms for different vari-

ations of the unknown graph exploration problem [39, 48, 51, 80], not knowing the

graph ahead of the time is a major obstacle to deploy these algorithms to crawl

RIAs.

Model based crawling makes assumptions about the behaviour of the application

and the structure of the application graph, and based on the assumptions made it

crawl the application. These algorithms have to detect and deal with violations of

the assumptions made. At the time of this writing, three major MBC strategies

are: the hypercube model, the menu model, and the component-based model.

While these three models cover a wide set of web applications, they are by no

means sufficient and more work is required to cover a larger portion of the web

applications that exist today.

• Scalability of State-Seen: Throughout the history of traditional web application

crawling, the URL-Seen problem has been one of the biggest challenges. This

problem does not exists in the context of RIA crawling since a typical RIA has

a small set of URLs that are associated with a large set of application states.

Inevitably, however, as RIAs scale a similar problem will present itself in the context

of RIA crawling. This related future problem referred to as State-Seen problem

answers: If an application state was seen before.

Solutions to this open problem can be inspired from the work done on URL-Seen

with one caveat: Comparing two URLs is an easy task, comparing two application

states can be very difficult and is the topic of DOM equivalency. Thus, solutions to

the state-seen problem requires combining some of the algorithms seen in URL-Seen

problem with some of the algorithms seen in DOM equivalency.

• Widget detection: In order to avoid state explosion, it is crucial to detect inde-
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pendent parts of the interface in a RIA. This can effect ranking of different states,

too.

• Definition of state in RIA: some HTML5 elements such as web sockets introduce

new challenges to the web crawlers. Some of the challenges are addressed by

Imagen[71], however many of these challenges remain open.

3.7 Distributed Computing

During early 70s, Organick[100] realized that it is cheaper to harness the power of multiple

computers by interconnecting them together, rather than building an expensive super

fast computer. Next few decades witnessed an explosion in engineering and deployment

of a field in computer science called distributed systems, that is made of small inexpensive

communicating nodes and achieves large computational power.

Over years, distributed systems has produced a large and fascinating literature, with

may different models of distributed computing. Giving a thorough introduction of dis-

tributed systems is beyond the scope of this thesis. However some of the distributed sys-

tems taxonomy is essential to formally define the target distributed crawler. This section

introduces basic models of distributed computing and briefly explain Cloud Computing

and Load Balancing.

3.7.1 Basic Models

Parallel computing has been the direction of hardware and software design in the last

two decades. Moore’s law is still alive and the number of transistors are increasing

exponentially. To accommodate large number of transistors hardware manufacturers

adopted multi-processor and multi-core environments[58].

Distributed algorithms generally fall into three different models:

• Shared memory: In this model all processors have access to the same memory[34].

Shared memory systems exist in different scales: they can be as small as a multi-

core CPU, or as large as a massive supercomputer with Remote Direct Memory

Access (RDMA)[24]. It is often challenging to create a large scale Shared-memory

system because in distributed systems CPUs are often not synchronized[58].

• Parallel algorithm: In this model the programmer can modify the network and

computational resources available to set up a parallel environment. Computational
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nodes communicate with each other not by writing to the same memory space, but

by sending messages to each other. Sorting networks are example of this model[32].

• Distributed algorithms: In this model, the programmer cannot choose the net-

work structure and the program should work irrelevant of it. This is the most

flexible model in harnessing different hardware settings available. In this model,

often all nodes are running the same application. An application designed in this

model can be modelled and verified by modelling the whole system as a graph, and

modelling each node as a finite state machine. Similar to Parallel algorithms, in

this model too nodes are communicating with messages.

3.7.2 Cloud Computing

Advancements made in network layer, storage technologies, multi-core CPUs, as well

as the rapid growth of data size, prevalence of service computing led to the emergence

of a new computing model called Cloud Computing [49]. In essence Cloud Computing

addresses the question of the location of the infrastructure, and offers business owners

cheaper infrastructures by economy of scale[112], through moving their computation to

the network[119]. Cloud Computing differs from Grid Computing in its massive scala-

bility and its abstraction of hardware and software by virtualization[49].

In 1961, John McCarthy predicted that computation may eventually be a public

utility. Although the idea behind Cloud Computing is rather old, only recently it be-

came widely deployed by industry[101]. The term “Cloud Computing” was first used

by Google’s CEO to describe Google’s new business model[126]. Since then the term is

defined in many different ways[119]. The National Institute of Standards and Technology

(NIST) defines cloud computing as:

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks, servers, stor-

age, applications, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction. This cloud model is composed of five

essential characteristics, three service models, and four deployment models.”[81]

By addressing difficult management problems, Cloud Computing quickly became pop-

ular: By deploying an application on the cloud a company requires no initial investment

and enjoy a pay-as-you-go model. Further, Cloud Computing is an easy and cheap way

of out-sourcing hardware and software maintenance. Last but not least, thanks to the

wide availability of the Internet, applications deployed on Cloud are accessible all around
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the world at all time[126].

Cloud Computing heavily relies on vitalization to abstract the computing resources.

The virtualization that happens in the Cloud environment is the chief factor that dif-

ferentiate Cloud Computing from Grid Computing[119]. This factor also rewards Cloud

environment with security by isolation and scalability. Virtualization happens on infras-

tructure layer, the layer on top of hardware layer, using software such as Xen[9]. The

infrastructure layer creates a pool of resources and allows the platform layer to run the

operating system and application framework on top of it. The last and top most layer

of a cloud environment is application layer, in which the user applications are running.

3.7.3 Load Balancing in Distributed Systems

Load Balancing is a technique used to increase the performance by distributing the work

among the nodes as evenly as possible[69]. A typical load balancing algorithm collects

information on items such as the load level at different working units, and based on the

collected information may migrate some data. Li and Lan[69] characterize different load

balancing algorithms based on three dimensions: Static versus Dynamic, Centralized

versus Distributed, and Application-level versus System-Level.

Static versus Dynamic

Static models make decisions about the distribution of the load only once and are not

adaptive. Dynamic models on the other hand are constantly adapting and evolving.

Traditionally dynamic load balancing algorithms are used in heterogeneous computing

environments, and static load balancing algorithms are used in homogeneous computing

environments[54].

Altilar and Paker[1] introduce a static partitioning and scheduling algorithm to pro-

cess video frames. The proposed algorithm is generic and can be applied to any appli-

cation with expensive independent data processing. Barbosa et al.[7] use linear algebra

to statically distribute work in a homogeneous as well as a heterogeneous environment.

Proposed algorithm seem to scale well, and be able to take advantage of the availabil-

ity of a wide range of heterogeneous processing units. Genaud et al.[54] uses a linear

programming algorithm and describe a static load balancing algorithm to optimally dis-

tribute data among nodes. Described algorithm takes as input network bandwidth as

well as processing power of different nodes.

Dynamic load balancing strategies are categorized in three sub-categories[35]: The



LiteratureReview 38

first approach, called Recursive Bisection, is to recursively divide the tasks plane by two

until the number of sub-regions is equal to the number of workers[15, 113, 116]. The

second approach, called Space-Filling Curve, maps and orders task in a one dimensional

space. The tasks are cut into weighted pieces and are assigned to the workers[47, 92, 95,

103, 120]. The final approach, called graph partitioning, takes advantage of geometric

locality and maps the problem of load balancing to the problem of graph partitioning

and graph decomposition[22, 33, 57, 60, 64, 104, 113].

Hybrid solutions based on static and dynamic model exist too. Lu and Zomaya[74]

propose a hybrid solution by partitioning the grid into different regions and integrating

static and dynamic model in each region.

Centralized versus Distributed

Centralized models make decision on a single location, whereas Distributed models enjoy

a distributed scheme to make load balancing decisions. Centralized approaches can be

very efficient, however in many cases centralized approaches are susceptible not to scale

as the centralized controller may become a bottleneck[74].

On the other hand, in a distributed model the communication cost may become

prohibitive, if all nodes to know the full state of the system. To deal with potentially

high communication cost in distributed models each node may store a partial state

of the system. Probabilistic and Diffusion-based approaches can be used to achieve

this[6, 74, 124].

Application-Level versus System-Level

Application-Level models target minimizing the task completion time, whereas System-

Level models target maximizing the rate of resource utilization. System-Level load bal-

ancing can be reduced to distributed scheduling problem which in turn is a distributed

constraint satisfaction problem[125]. Application-Level load balancing is the topic of

extensive research. Different assumption about the underlying jobs leads to different

policies to reduce the application completion time or minimize its makespan[69]. If the

total completion time of each task is known the problem of load balancing reduces to

the problem of scheduling and classical online scheduling algorithm find the optimal

solution[32].

If the completion of tasks is not known stochastic approaches may be used to balance

load among the nodes. Weiss[122] studies distribution of stochastic tasks over parallel
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machines. Weber[121] studies task distribution in an online fashion. In this model the

assignment of jobs to the nodes is not necessarily pre-computed and task can be assigned

to the nodes as the old ones finish. Goel and Indyc study load balancing in systems

that tasks completion time follow Poisson and exponential distribution[55]. Kleinberg

et al. address load balancing in the systems that tasks completion time is arbitrary[65].

Lehtonen looks into scheduling jobs with exponential completion time distribution over

identical machines[67].

3.8 Summary

This chapter reviews the area of web crawling for the three kinds of web applications:

traditional web applications, deep web applications, and rich internet application. As the

web expands, efficient crawling of large web applications remain a challenge. This thesis

contributes to the field of web crawling by harnessing the power of parallel processing to

reduce the time it takes to crawl large RIAs.



Chapter 4

Dist-RIA: A client-server system

architecture to crawl RIAs

In this chapter we introduce Dist-RIA1, a distributed architecture to crawl RIAs using

a star topology. We explain some of the practical aspects and challenges we faced in

designing the Dist-RIA architecture.

The contributions of this chapter include:

• A new static partitioning algorithm based on JavaScript events.

• A distributed architecture for RIA crawling.

• A prototype implementation and experimental evaluation of Dist-RIA architecture.

The rest of this chapter is organized as follows: A high level view of the architecture

is presented in Section 4.1. In Section 4.2, we explain the variables and the objects used

to represent the state of the crawl internally. In Section 4.3, we explain the crawling

protocol that the nodes and the coordinator use to communicate with each other. In

Section 4.4, we delve into some implementation issues and evaluate the performance of

our prototype. Finally, in Section 4.5 we conclude this chapter.

4.1 Architecture

There are two types of working components in a Dist-RIA Crawler. A special process

called the coordinator is responsible for coordinating the communication among the

1Dist-RIA was first published in 3PGCIC 2013[89]

40
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nodes. All other processes are working processes, and are henceforth referred to as the

nodes.

Processes communicate with each other in a star topology, where the coordinator

is at the centre of the star. Through communication with the coordinator, the nodes

indirectly inform each other of the discovered states. Through this communication the

coordinator also learns about the load level of each node and the status of the crawl.

Initially every node is assigned a unique identifier number by the coordinator, denoted

by i as was explained in Section 4.2. The coordinator always initializes the nodes with

i, propagates the knowledge of discovered states, and handles termination.

4.2 Objects and States

Application State object is used to represent an application state. This object is used

to represent a state internally by the nodes and the coordinator. It is also used by the

coordinator to disseminate the knowledge of discovered application states to the nodes.

In addition to the application state object, the nodes and the coordinator have other

internal objects to store the state of the crawl. These objects are explained in this

section.

4.2.1 Application State

• State identifier : A unique identifier for the state, that is calculated as the hash of

the serialized DOM.

• Parent state: The state identifier of a parent state through which the current state

is reachable.

• Parent event index : The index of the event to execute from the parent state to

reach the current state.

• Number of events, denoted by E: The number of events in the state.

• Events : The ordered list of events in the state. Each event has the following

variables:

– JavaScript Event : The JavaScript event to be executed by the node.
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– Target State: The target state reached by executing the event from the state.

Ahead of the time the node may not know the value of this item, and thus it

is initialized to null.

4.2.2 Coordinator State

The coordinator stores the following variables and objects:

• Number of nodes, denoted by N : The number of crawler nodes. Crawling starts

after the N nodes have contacted the coordinator for the first time.

• List of states : The list of all states discovered by all nodes.

• List of states per node: The list of states’ state identifier that each node knows. The

coordinator keeps track of the states that a node knows about. If a node contacts

the coordinator and probes it for new states, the coordinator will only reply back

with the newly discovered states that the node does not yet know about.

• List of nodes status : This list stores the node status of all nodes. The node status

is explained in Section 4.2.3.

4.2.3 Node State

Each node stores the following variables and objects:

• Node identification number, denoted by i: A unique identifier allocated to the node

by the coordinator.

• Coordinator address : The coordinator’s address through which the node contacts

the coordinator.

• Seed URL: The URL for the RIA. We assume this URL does not change across

different states of the RIA.

• Pending tasks : A list of tasks that the node is responsible to do.

• States : The list of states that the node knows about.

• Status : The status of the node. The node may be in one of the following states:
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Disc.start Active Done Term.
work arrives

no work locally

work arrives

no work

Figure 4.1: The node status state diagram: Disconnected, Active, Done and Terminate

.

– Disconnected : The node is not yet initialized.

– Active: The node has been initialized and has work to do.

– Done: The node has finished executing all its tasks and does not have any

work to do.

– Terminate: Crawling is finished and the node can leave the system.

Figure 4.1 shows the possible status transitions.

In Dist-RIA Crawler, initially the coordinator address is the only global constant,

and it is assumed to be common knowledge before the crawling begins. Having the coor-

dinator address, the node retrieves its identification number and the seed URL from the

coordinator upon initialization. It then proceeds with the crawling algorithm described

in Section 4.3.1.

4.3 Crawling Protocol

Dist-RIA Crawler is composed of a communication protocol between the nodes and the

coordinator. This protocol deals with the crawling of the application, the exchange of

the application states between the nodes and the coordinator, as well as the termination

of the crawling process once all the states are discovered and all of the events have been

executed.

Every time a node discovers a new state, it informs the coordinator. A node that has

no more work to do also contacts the coordinator and probes the coordinator for more

work to do. The coordinator may answer the contacting node with a new task assigned

to it, or a notification that the crawl is over. Should a node receive new tasks from the

coordinator it will add them to its pending tasks.
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To facilitate the deployment of Dist-RIA Crawler over different firewall settings, it

is also assumed that only the coordinator has a reachable IP address. In other words,

the coordinator is an HTTP server and all other crawler nodes are HTTP clients. As a

consequence, the coordinator has no means to contact the nodes and should it have a

message for a node, it must wait until it is contacted by that node and respond with the

message.

Once a node executes all the events that it is responsible for, it asks the coordinator

for new tasks. The coordinator responds as follows: If the status of all nodes are done,

the coordinator initiates the termination process by sending a terminate message to all

nodes. If not, the coordinator orders the node to ask again by sending a stay message.

The node then probes the coordinator again and the loop continues until either more

work becomes available or a termination order arrives.

Section 4.3.1 explains the crawling algorithm as it runs on the nodes.

4.3.1 Protocol Definition

Algorithm 1 describes the Crawling Algorithm as it is executed at each node. A node

starts in the disconnected state. The node goes from the disconnected state to the active

state upon getting the initial token which contains the seed URL, the node identification

number i, and the load balancing approach from the coordinator. It then iteratively

executes tasks and removes them from its pending tasks. When the list becomes empty,

the node moves to the done state. At this point, it calls the coordinator, and depending on

the answer received, it either goes back to the active state if more work becomes available,

or it goes to the terminate state if no more work is available globally. The crawling

algorithm invokes a set of procedures, and sends certain messages to the coordinator.

These procedures and messages are explained below.

The following procedures communicate with the coordinator:

• GetInitialTokenFromCoordinator The node contacts the coordinator and gets a

token that contains the following two items:

– The unique node identification number i.

– The seed URL.

This method takes no input, and outputs the retrieved message.
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Algorithm 1 Crawling algorithm (as executed at each node)

initialToken← GetInitialTokenFromCoordinator()

i← initialToken.identificationNumber

SeedURL← initialToken.seedURL

nodeStatus← Active

while (nodeStatus is not Terminate) do

if pendingTasks is Empty then

pendingTasks← GetTasksFromCoordinator()

if pendingTasks is Empty then

nodeStatus← Done

else

nodeStatus← Active

end if

TerminationStatus← SendStatusToCoordinator(nodeStatus)

if TerminationStatus is Terminate then

nodeStatus← Terminate

end if

else

TaskToExecute ← getTask(currentState,pendingTasks)

currentState ← ExecuteTask(TaskToExecute)

if currentState is not in discoveredStates then

push currentState to discoveredStates

SendNewStateToCoordinator( currentState )

pendingTasks← GetTasksLocally(currentState)

end if

pendingTasks.Remove(taskToExecute)

end if

end while
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• GetTasksFromCoordinator : The node contacts the coordinator and asks for tasks.

The coordinator responds with a set of tasks, or an empty result. This method

takes no input, and outputs the answer received from the coordinator.

• SendStatusToCoordinator : Sends the status of the node to the coordinator. The

coordinator will respond with the status of global termination, which can be either

of:

– Active: If the node is busy.

– Stay: If there exist more work to do globally.

– Terminate: If there exist no more work to do globally, and all nodes are in

done state.

This method takes the status of the node as input, and outputs the global termi-

nation status retrieved from the coordinator.

• SendNewStateToCoordinator : Sends a newly discovered state to the coordinator.

This method takes the state to be sent to the coordinator as input, and has no

output.

Other local procedures invoked during the crawling algorithm are:

• getTask : Uses a greedy strategy to search in the application graph for a pending

task, and returns it. The greedy algorithm, which finds the closest task to the

current state, is described by Dincturk et al[38]. A summary of the algorithm is as

follows:

1. Construct a temporary graph of states by:

(a) Adding a node to the graph for every application state.

(b) Adding a transition to the graph per event that has known source and

target states.

2. Add a transition from each node in the graph to the node that corresponds

to the seed URL and uses the reset cost to assign weight to these transition.

The reset cost is the average cost of retrieving the seed URL. This value is an

environmental constant.
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3. Iterates through all the tasks in the pending tasks. If the state for the task

does not exist in the application graph (i.e. this is a new state discovered by

another node), add a new node to the graph. Add a transition from parent

state of the task state holder to the newly created nodes.

4. Run a Breadth-First-Search from the current state until a state among the

pending tasks is found.

This method takes the current state, and the set of pending tasks as input, and

outputs a task to be executed.

This greedy algorithm is not the only strategy to find a task. In the case of a

full crawl, it is a good practice to choose tasks that minimize the overall crawling

time. In the case of a partial crawl, it is a good practice to choose tasks that

increase the chances of discovering new states earlier in the crawl. Menu and

probabilistic model-based crawling algorithms[28, 31, 38] address this issue in depth

and attempt to find as many states as early as possible in the crawl. Also if one

categorizes pending tasks based on their holder states, this procedure can be used

to implement Dept-First-Search and Breath-First-Search strategies:

– LIFO: A Last-In-First-Out order of picking results in the implementation of

a Dept-First-Search (DFS) strategy within the scope assigned to the node.

– FIFO: A First-In-First-Out order of picking results in the implementation of

a Breath-First-Search (BFS) strategy within the scope assigned to the node.

• ExecuteTask : Executes the task passed to it. This procedure takes the task to be

executed as input and returns the state that is reached by executing the task as

output.

• GetTasksLocally : This procedure gets a state as input, uses a partitioning algo-

rithm and outputs a set of tasks. Dist-RIA Crawler uses a simple and primitive

partitioning algorithm where it breaks the events into sets of almost equal sizes,

one set per node. Each set is then deterministically and locally allocated to the

node that it belongs to. Partitioning algorithm is formally defined and explained

in Section 5.2.
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Browsed Source Code States Transitions Average Number of Total JavaScript

(Nodes) (Edges) Edges per Node Events Executed

Apache HTTPD 2.4.3 91 2,293 25.197 7,461

Apache Cassandra 1.2.1 163 4,816 29.546 27,149

Table 4.1: AJAX file browser testbeds

4.4 Implementation and Evaluation

To evaluate the Dist-RIA Crawler architecture, a prototype of the system was imple-

mented. 2 The Coordinator is implemented in PHP 5.2.10 and MySQL 5.0.77, and

runs on an Apache web-server hosted on a Linux® Kernel 2.6 operating system. The

coordinator process runs on a machine with an Intel® Xeon® CPU E7330 @ 2.40GHz

and 4GB of RAM.

The crawler nodes are implemented in C#.NET using the .NET 4 framework. V8-

engine is used to emulate a browser with the capability to run JavaScript events. Each

crawler process runs on the Windows® 7 Enterprise operating system hosted on a sep-

arate machine with an Intel Core 2 Due and 1GB of RAM.

The nodes and the coordinator communicate using the HTTP protocol over TCP

channels using a 10G-bps local area network. All of the communications happen in

JSON format in UTF8 encoding

4.4.1 Test-Application3

A jQuery-based AJAX file browser library4 (Figure 4.2) is used to construct the test-

applications by applying the browser to the file folders. To avoid explosion of states, we

disabled the caching mechanism included in the library, and configured the application

so that it only shows one open sub-folder at any given time. In this test-application there

is one state for each sub-folder in the given file folder. The number of transitions from

a state depends on its location and dept of the open sub-folder in the file hierarchy.

The test-applications are two file folders that contain the source code of two open source

projects (Table 4.1).

2Similar to [84], only the JavaScript events that are triggered directly as a result user interaction

with the RIA are executed.
3http://ssrg.eecs.uottawa.ca/papers/DistRIA-3PGCIC-2013/testbeds.tar
4http://www.abeautifulsite.net/blog/2008/03/jquery-file-tree/
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Figure 4.2: File tree browser RIA screen-shot

4.4.2 Results and Discussion

This section presents the experimental results of crawling the test-applications using our

prototype. The experiments measure the efficiency of the Dist-RIA Crawler in harnessing

the computational power available to it. We measure the effect of increasing the number

of crawler nodes on the time it takes to crawl a given RIA. We further capture the time

spent to execute JavaScript events, the network delay, the time spent in the coordinator,

and time wasted while being idle. Each test-application is crawled in 15 settings with

1 to 15 nodes. We ran each experiment three times and the presented results are the

average of these three runs.

Figure 4.3 shows the time it takes to crawl the test-applications in parallel using

different number of crawling nodes, and shows the break-down of the time in each case.

As the figure shows Dist-RIA Crawler is more effective in the larger test-application

compared to the smaller one. In the case of the smaller test-application, on average

76.38 percent of the total to crawl was spent executing JavaScript events, and 19.77

percent of it was spent being idle. Whereas, in the case of the larger test-application, on

average 85.31 percent of the total time was spent executing JavaScript events, and only

11.34 percent of it spent being idle. In both cases, network delay and the time spent at

the coordinator are minimal, and as the number of crawler nodes increases a satisfactory

speedup is observed.

Along with the measured time, we also depict the time it takes to crawl each test-bed

with one node, divided by the number of nodes used to run the experiment. This number
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Figure 4.4: Idle time distribution during parallel crawl of AJAX file browser with 15

nodes: Apache HTTPD (upper figure), and Apache Cassandra (lower figure) source

codes.
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is used to present the optimal hypothetical case: If it takes T1 seconds to crawl a RIA

with one node, one expects that n nodes will take take at least T1/n seconds to crawl

the same RIA. We call this expected number the theoretical optimal time which is shown

on the chart as a line.

Optimal time is only meaningful if the CPU is the bottleneck. In case of the larger

test-application, a better than optimal speedup is observed in Figure 4.3: by increasing

the number of nodes from one to three we achieve speed-up of more than three. This

speedup is achieved since the processing power is not the bottleneck when crawling the

larger application with one node and two nodes, but memory swapping is. This effect

disappears with a higher number of nodes as the given RAM suffices. To eliminate the

effect of memory swapping, in the case of the larger test-application the optimal time is

extrapolated based on the time it takes to crawl the application with three nodes.

The main challenge for scalability is the idle time. This is the time that a subset of

nodes have nothing to do and are waiting for other nodes to do their work. Figure 4.4

shows the idle times of crawling test-applications with 15 nodes. As explained above,

each experiment was repeated three times and each of the three bars for each node in

this chart represent the idle time for that node in one of the runs. As both Figures 4.3

and 4.4 show, idle times are relatively for the smaller test-application. More specifically,

in the smaller test-application node number 3 is the bottleneck in all runs with 15 nodes,

whereas the larger test-application enjoy a more equal distribution of idle times. The use

of a strict-stride based assign function partially explains this discrepancy. This function

may make a node bottleneck by assigning a larger number of time-consuming events to

it. This problem is application-specific and smaller applications are more susceptible to

it. The use of more randomized Assign functions (e.g. hash-based), and the deployment

of load balancing algorithm can alleviate this problem.

4.5 Conclusion

This chapter considers distributed crawling of RIAs using a Breadth-First strategy. A

new load partitioning algorithm was proposed and a system for distributed crawling of

RIAs, called Dist-RIA Crawler, was introduced. Dist-RIA Crawler partitions the crawl-

ing task based on the JavaScript events of a given page by assigning different subsets of

events to different crawling nodes. A special node called the coordinator is used to control

the system and to distribute discovered application states among the crawling nodes, as

well as to perform load balancing. A prototype of the system is implemented and eval-
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uated with up to 15 nodes. For large RIAs, the implemented prototype demonstrate

satisfactory speed up.

Although Dist-RIA Crawler scales well up to a number of nodes, its suffer from the

high cost of executing events. This cost is primarily the result of using a Breath-First

Strategy. As Dincturk[36] shows the overall cost of crawl can be reduced substantially by

using Greedy or Probabilistic model. Additionally, a technical limitation that Dist-RIA

Crawler faces is using a V8 JavaScript engine. At the time of this writing, V8 engine

offers limited access to the JavaScript virtual machine.

To reduce the high cost of Breadth-First algorithm, and to take advantage of a more

open JavaScript engine, Chapter 6 shows a distributed architecture to crawl a website

using the greedy algorithm implemented over an open source JavaScript engine called

PhantomJS.



Chapter 5

Some Implementation Issues

The Dist-RIA Crawler design described in the last chapter explained a distributed crawler

for RIAs that achieves parallelism by having all the crawlers go to each application state,

however, each crawler only explores a specific subset of the events in that vertex. The

union of all these events covers all the events in the state. In Dist-RIA Crawler, each

crawler node implements a Breath-First algorithm in its own scope.

In the context of RIA crawling, the term crawling strategy refers to the strategy the

crawler follows to decide the next event to execute. Dincturk et al. [13, 31, 38] studied

several crawling strategies to optimize the crawl according to two criteria: reducing the

total time of the crawl, and finding new application states as soon as possible during

the crawl. Among the strategies studied, the greedy algorithm[102] scores well in the

majority of cases. The greedy strategy is particularly much better than the breath-first

search strategy. This algorithm always chooses the closest application state with an

un-executed event, goes to the state and executes the event.

In the Dist-RIA Crawler, the nodes only broadcast the knowledge of application

states, and no single node has the entire knowledge of the transitions between states. This

restriction does not allow a Dist-RIA Crawler to run the greedy algorithm: knowledge

of application transitions is a prerequisite for the greedy algorithm. In addition, through

our experiments with the Dist-RIA Crawler, we learned about other short-comings as

well. This Chapter addresses these short-comings as follow:

• Client-side events: Due to the use of the V8-Engine, Dist-RIA Crawler can-

not capture client-side event listeners. This, merely technical, limitation of the

V8-Engine stems from its API. This limitation did not pose a problem for the ex-

periments presented in Chapter 4, since the target applications considered did not

54
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use any event that is un-detectable by the Dist-RIA Crawler. However, it restricts

the crawler to crawl other RIAs.

To deal with this problem, we replaced the V8-Engine with a virtual web browser.

Details on this replacement and its ramifications are described in Section 5.1.

• Partitioning Algorithm: The Dist-RIA Crawler used a simple range-based parti-

tioning algorithm. This algorithm may lead to unequal partitioning and may make

some nodes bottlenecks. Section 5.2 describes different partitioning algorithms and

chooses the most efficient algorithm.

In addition to these improvements, we measure performance of different operations

in this chapter. The improvements described and the performances measure, are used to

construct the efficient crawlers described in the next chapters.

The rest of this chapter is as follows:

• In Section 5.1, we describe how to run a full-fledged browser using PhantomJS.

• In Section 5.2, we describe how to improve the partitioning algorithm.

• In Section 5.3, we measure performance overhead of running operations such as

calculating the next task to execute.

• Finally, we conclude this chapter in Section 5.4.

5.1 Running a Full-Fledged Browser

The Dist-RIA Crawler abstracted the interaction with the web application through a V8

JavaScript Engine. As mentioned in Section 4.5, V8 limits our ability to interact with the

web application. To by-pass this limitation, we switched from the V8 JavaScript engine

to a full-fledged headless browser with the ability to render CSS and take screenshots

from the web application. This browser is called PhantomJS1, an open-source headless

WebKit.

Switching from a JavaScript engine to a full-fledged browser comes with a caveat:

the asynchronous nature of JavaScript effects the crawling strategy. The crawler can no

longer simply trigger an event and consider the execution finished when the call returns.

Executing an event in JavaScript may trigger an asynchronous call to the server, or

1http://phantomjs.org/

http://phantomjs.org/
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schedule an event to happen in the future. When these events happen the state of the

application may change. In other words, there are two main types of events that may

have dormant ramifications. These two event categories include: Asynchronous calls and

Clock events. The JavaScript engine (henceforth referred to as JS-Engine) deals with

these events as follows:

• Asynchronous calls: Upon triggering an event on the target application, the JS-

Engine waits until the event and all its ramifications are over. For this to happen

successfully, the JS-Engine requires a mechanism to keep track of asynchronous calls

in progress and wait for their completion before continuing. Section 5.1.1 describes

a code-instrumenting technique to identify the asynchronous calls in progress. This

section also shows how the crawler application can get a notification upon initiation

and termination of any such events in the target application.

• Clock events: Time events are another type of events that JS-Engine needs to

be aware of. These events happen at some time in the future and, similarly to

asynchronous calls, JavaScript does not offer a mechanism to keep track of them.

Section 5.1.2 describes another code-instrumenting method to identify and handle

such events. Having these notifications, the crawler application can decide the

right time to retrieve the current state of the target application and trigger the

next event.

In addition to asynchronous calls and clock events, another code-instrumentation

is also required on the JavaScript part of the web application to fully detect client-side

events. The JS-Engine needs to identify the user interface events. Client-side events that

leave a footprint in the DOM are easy to detect: Traversing the DOM and inspecting each

element can find these events. Unfortunately not all client side events are extractable

from the application DOM. Another category of events are Attached events. These events

are attached to an element using addEventListener and do not reflect themselves on the

DOM. Section 5.1.2 describes a mechanism to identify such events.

The code snippets described in Sections 5.1.1, 5.1.2 and 5.1.2 are injected into the

header of the target web application using a proxy server. They are injected in such a

way as to ensure that they run prior to running any of the RIA’s original JavaScript

code.
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Listing 5.1: Hijacking asynchronous calls

XMLHttpRequest.prototype.sendOriginal = XMLHttpRequest.prototype.send;

XMLHttpRequest.prototype.send = function (x){

var onreadystatechangeOriginal = this.onreadystatechange;

this.onreadystatechange = function(){

onreadystatechangeOriginal(this);

parent.ajaxFinishNotification();

}

parent.ajaxStartNotification();

this.sendOrig(x);

};

5.1.1 Handling asynchronous calls

Executing an event on the RIA may start asynchronous HTTP calls to the server. It

is the responsibility of the JS-Engine to wait for all asynchronous calls to finish before

it continues its interaction with the application. There are unfortunately no ways for

the JS-Engine to know if there are asynchronous calls in progress without modifying the

target web application. Fortunately, however, one can inject a JavaScript code into the

RIA to re-define the browser’s native code that performs asynchronous calls and add

necessary measures so that the target application keeps track of the asynchronous calls.

Let us define two JavaScript functions called ajaxStartNotification and ajaxStopNo-

tification. These two functions are to be called every time an asynchronous call starts

or finishes, respectively. Listing 5.1 shows how to redefine asynchronous send and on-

readystatechange operations, such that the target web application notifies the crawler

application automatically upon start and finish of asynchronous call2.

As the listing shows, JS-Engine redefines both the send method and the onreadys-

tatechange variable. A new method, called sendOriginal, is defined in the context of

XMLHttpRequest so that it has access to all the methods and attributes of the XML-

HttpRequest object, and populates it with the contents of the send method, which is

web-browser native code.

2In this thesis we only show the technique for XMLHttpRequest the module responsible for asyn-

chronous calls in many popular browsers such as Firefox and Chrome. Microsoft Internet Explorer,

however, does not use this module, and instead it uses ActiveXObject. Similar measures can be taken

for ActiveXObject.
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Listing 5.2: Hijacking setTimeOut

var setTimeoutOriginal = setTimeout;

setTimeout = function(x,y){

var self = this;

var newX = function(x){

x();

parent.setTimeoutEndNotification(self.setTimeoutHandle);

};

this.setTimeoutHandle = setTimeoutOriginal(newX,y);

parent.setTimeoutStartNotification(this.setTimeoutHandle);

return this.setTimeoutHandle;

};

In effect, JS-Engine renames XMLHttpRequest.send to XMLHttpRequest.sendOriginal.

It then redefines the send method of XMLHttpRequest. The new send method first noti-

fies the parent about the start of a new asynchronous call, then proceeds with the original

send method that is pointed at by sendOriginal.

A similar measure is taken for the XMLHttpRequest . onreadystatechange variable.

This call back function is first stored in a variable called onreadystatechangeOriginal.

The onreadystatechange is then redefined as a function. This function first performs the

original onreadystatechange function, then notifies the JS-Engine that the asynchronous

call is over. Note that this pointer has to be passed to the onreadystatechangeOriginal

function so that the original onreadystatechange function is called in the right context.

5.1.2 Handling clock events

The second source of asynchronous behaviour of a RIA with respect to the time comes

from executing clock functions, such as setTimeout and setInterval. These methods are

used to trigger events in the future. In many cases, such events can help animating

the website, and adding fade-in or fade-out effects. Knowledge of the existence of such

dormant functions may be necessary for the JS-Engine. This sections elaborates on

receiving notifications from the setTimeout and clearInterval functions. Similar measures

can be used to receive notifications from setInterval events.

setTimeout is used to call a function, passed as an argument, after a specified number



Some Implementation Issues 59

Listing 5.3: Hijacking clearInterval

var newClearInterval = clearInterval;

clearInterval = function(x){

parent.clearIntervalNotification(x);

return newClearInterval(x);

};

of milliseconds. Listing 5.2 shows how to inform the JS-Engine of the creation of a

dormant events with setTimeout, and also after the function is fired up. The variable

setTimeoutHandle is used to store the handle to the event, and is passed to the JS-

Engine. This variable is passed to the JS-Engine in case the crawler intends to ignore

certain clock events.

clearInterval is used to terminate prematurely a clock event. Listing 5.3 shows how

to get a notification in the JS-Engine upon firing a clearInterval function. Similar to

setTimeout, in this case too, the handle to the clock event (i.e. x ) is passed to the

JS-Engine, in case the engine needs to disregard a certain clock event.

Handling Attached Events

The final challenge faced by the JS-Engine is to detect client-side events attached through

event listeners. These events are added through a call made to addEventListener and are

removed through a call made to removeEventListener. Listing 5.4 shows a technique to

keep track of events added and removed through addEventListener and removeEventLis-

tener.

This listing first defines a global object called eventListeners. When a call is made

to addEventListener an entry is added to this object, and when a call is made to re-

moveEventListener the corresponding element is removed. Hence at any given point,

JS-Engine can simply check the contents of this object to get elements with attached

events.

5.2 Partitioning Algorithms

A primitive partitioning algorithm based on ranges was introduced in the Dist-RIA

Crawler. In a RIA, it is often the case that the relative location of events does not
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Listing 5.4: Hijacking event listeners

var _eventListeners;

var addEventListenerOrig = Element.prototype.addEventListener;

var removeEventListenerOrig = Element.prototype.removeEventListener;

var addEventListener=function(type,listener) {

_eventListeners[type][listener] = this;

addEventListenerOrig(type,listener);

};

var removeEventListener=function(type,listener) {

delete _eventListeners[type][listener];

removeEventListenerOrig(type,listener);

};

Element.prototype.addEventListener=addEventListener;

Element.prototype.removeEventListener=removeEventListener;

if (HTMLDocument) {

HTMLDocument.prototype.addEventListener=addEventListener;

HTMLDocument.prototype.removeEventListener=removeEventListener;

}

if (Window) {

Window.prototype.addEventListener=addEventListener;

Window.prototype.removeEventListener=removeEventListener;

}
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change much between different states. For example, the location of navigation menus

may always remain on the top of the page, or a log-in link tends to remain on the top-

right corner of the page. By allocating events based on ranges, some nodes tend to get

similar events. If the density of time consuming JavaScript events happened to be high

in some ranges in a state, chances are that the same scenario happens on other states.

To solve this issue, this section describes better partitioning algorithms.

By using a partitioning algorithm, nodes decide the next event to execute locally

based on the events allocated by the partitioning algorithm. A partitioning algorithm

takes as input a list of events in the page and the node identifier and returns the list of

events that belong to the identified node. Any partitioning algorithm has to fulfill the

following two conditions:

• Guarantee that all events are executed in all states.

• Lack of work duplication: the partitioning algorithm should assign each event to

only one node.

The partitioning algorithm is to divide the events in the page into almost equal subsets

and allocate each subset to a node. As described in Chapter 2, the assumption is that the

number of events in the page is much higher than the number of nodes. These subsets

are not necessarily ranges. Some partitioning algorithms that perform this function are

described below.

• Range-Based Partitioning algorithm: The algorithm divides the number of

events in the page Es by total number of nodes N , and gets N ranges, one for each

node. The algorithm then allocates each range to one node, starting from the first

node. In the other words, an event in state s belongs to node i if, given its event

identifier eid, the following condition holds:

b
eid
N
c = i

This algorithm almost equally distributes the work among the nodes. In the worst

case scenario, if Es is not a multiple of N , some of the nodes will get one less event

to execute than the others. This algorithm was used in Chapter 4 to construct the

Dist-RIA Crawler.

• Modulo-Based Partitioning algorithm: Another similar approach is to use a

modulo function. In this case, the partitioning algorithm divides the events in the



Some Implementation Issues 62

page into a set of strides, one stride per node. More formally, an event in state s

belongs to node i if its event identifier eid satisfies the following condition:

eid mod N = i

• Hash-Based Partitioning algorithms: In cryptography, a hash function is de-

fined as a function H : K ×M → (0, 1)n where K is the key, M is a plain-text,

and (0, 1)n is a fixed size string representing the hash of the plain-text M with key

K[109]. In effect hash functions achieve a deterministic random mapping of input

to a finite output set. This valuable attribute can be used to map events in the

page to a finite set of nodes. To achieve this, the event identifier is to be hashed,

and the hash is to be mapped to {0, 1, . . . , N − 1}. More formally, given a hash

function H, a random number R as the key, an event in state s belongs to node i

if its event identifier eid satisfies the following condition:

(H(R, eid))×N

2n
= i

It is often the case that many events are repeated in different states of the application,

and further they have the tendency of keeping a relative location in the DOM. Range-

based and modulo-based partitioning algorithms are susceptible to make some of the

nodes bottlenecks by constantly assigning them time consuming events. Due to properties

of hash functions, they seem to randomly distribute events among the nodes. Thus, hash-

based partitioning functions are less susceptible to make some nodes bottlenecks.

The performance of range-based and modulo-based partitioning algorithms can be

improved by random and deterministic permutation of events in the page. pseudoran-

dom number generator algorithms are useful to achieve this. Formally, a pseudorandom

generator G : Din → Dout maps the inputs from input domain Din into the output do-

main Dout. In addition to this requirement, pseudorandom number generators are often

good in creating an output that is equally distanced in Dout irrelevant of the input[19].

A thorough survey of pseudorandom number generators is available by Ritter[106]. If

before applying range-based and modulo-based algorithm a pseudorandom permutation

is applied to the events in the page, the two partition algorithms are no longer vulnerable

to assigning time consuming events to a set of nodes.

In case of Breath-First, Depth-First, and greedy strategies, it is trivial to create a

partitioning algorithms since events to not have types. In these cases, any of the parti-

tioning algorithms described above can be used as they are. In case of the probabilistic



Some Implementation Issues 63

model, if no unexecuted event is found in the current state, a search is initiated from the

current state to find a state with an un-executed events which has the highest probability

to lead to a new state. In this strategy events have types, and the history of execution of

an event type is required before the node can calculate the probability that an event from

a given type can lead to a new state. To address this issue, the partitioning algorithms

assign events based on their types to the nodes. In this model, events in the page are

first categorized into their types, then event types are allocated to the identified node.

5.2.1 Implementation of Partitioning Algorithms

This section explains some implementation details about hashing functions and pseudo-

random number generators. Due to their trivial nature, details about range-based and

modulo-based partitioning algorithms are omitted.

Hash functions

Two widely used families of hash algorithms are: message-digest family [107] (e.g. MD4

and MD5) and secure hash family [123] (e.g. SHA-2 and SHA-3). For the best choice

of hash function we look into the CPU consumption of each algorithm. Relative perfor-

mance of these functions are evaluated in Section 5.2.2.

Pseudorandom Number Generator

Linear Congruential Generators [117] (LCGs) are a class of algorithms to generate pseu-

dorandom numbers. This is one of the oldest and most widely used classes to generate

pseudorandom numbers. This class is defined as a generator series X where:

Xn = aXn−1 + c (mod M)

where a, c, and M are integer factors[117]. While LCGs are fast and memory efficient

algorithms, they suffer from poor dimensional distribution[44]. In our application, lack

of a good dimensional distribution defeats the purpose of using a pseudorandom number

generator.

Lagged Fibonacci Generators (LFGs) are an improvement over linear congruential

generators with a better dimensional distribution[62]. An LFG generates series X where:

Xn = (Xn−p �Xn−q) (mod M)
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Listing 5.5: Fisher-Yates Shuffle

function fisherYateShuffle ( unshuffledArray) {

for (var index = unshuffledArray.length - 1; index > 1; index--) {

var randomIndex = getPseudoRandom(index);

var temp = unshuffledArray[index];

unshuffledArray[index] = unshuffledArray[randomIndex];

unshuffledArray[randomIndex] = temp;

}

return unshuffledArray;

}

where p and q are predefined lag factors and � represents a generic binary operation

such as addition, subtraction, or bitwise exclusive-or[62].

Event List Permutation

Given a deterministic pseudorandom number generator function, the set of events in the

page are to be shuffled deterministically. A simple yet powerful shuffling algorithm is

called Fisher-Yates shuffle, also known is Knuth shuffle[18]. This time optimal algorithm

has the complexity of O(n) and achieves a uniform distribution given the proper random

number generator.

The shuffling algorithm works by taking an array of events as input. It goes through

the elements of the array one by one from the last element to the first. At each step it

chooses a random element from the beginning of the list to the current position in the list,

and swaps the content of the current element with the randomly chosen element. Code

snippet 5.5 shows the implementation of the algorithm in JavaScript. In the code snippet,

getPseudoRandom function represent the pseudorandom number generator that, given

an upper bound, returns a random number from 0 to the given upper bound.

5.2.2 Evaluation of Partitioning Algorithms

To choose the most effective partitioning algorithm, in this section we compare the

relative performance of hash functions and pseudorandom number generators. Figure 5.1

compares the performance of different hash algorithms as well as the random shuffle. Two

algorithms from the message digest family (i.e. RIPEMD160 and MD5), three algorithms
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Figure 5.1: Time performance comparison between the hashing algorithms

from secure hash family (i.e. SHA1, SHA256 and SHA512), as well as the Fisher-Yates

shuffling algorithm with Lagged Fibonacci Generator (LFG) are compared. The hasher

algorithms are implemented in JavaScript language by an open source library called

crypto-js3, and the LFG pseudorandom number generator is implemented by another

open source library called Fibgen.js4.

There is a box plot per hash function, and one for the shuffling function. Each box

plot shows the quartiles of the time it takes for the algorithm to map an input to its

output. The input represent the position of an event in the page and is an integer. The

output is the new position of the event in the page and is another integer. In addition

to the quartiles, a dashed line shows the average time for the algorithm to perform its

operation. As for input, integers between 0 and 999 are chosen. Each experiment was

repeated 1000 times and the times presented are the average amount. Numbers are

reported in logarithmic scale, and the time unit is micro-second.

As the figure shows, the two fastest algorithm to take a hash of an input are MD5 and

SHA1, with SHA1 out-performing MD5 slightly. Based on the results of this experiment,

SHA1 is chosen as the mapping function for the partitioning algorithm used by the peer-

3https://code.google.com/p/crypto-js/
4https://gist.github.com/wivlaro/6375828

https://code.google.com/p/crypto-js/
https://gist.github.com/wivlaro/6375828
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to-peer architecture.

5.3 Performance Measurements

In this section we measure the performance of certain operations used by the crawling

algorithm. These measurements are used in later chapters to justify some of the design

decisions made.

5.3.1 Time to transmit messages

As described before, communication happens through message passing. In this section

we measure the efficiency of message passing. Figure 5.2 shows the time it takes to send

a message from a node to another, in logarithmic scale. Each message was sent 100 times

and the distribution of measured time is indicated by the corresponding stack-bar. The

measured times include the time it takes to encode the message by the sender and the

time it takes to decode it by the receiver.
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Figure 5.2: Cost of sending messages between nodes

Given the measured times, we can calculate overhead of sending different messages

during the crawl process:

• State: A message to inform another node about a new state discovery contains

state identifiers, number of events, a parent state identifier, and an event identifier

in the parent state that leads to the discovered state. These items, along with the

message header take between 128 to 256 bytes. Thus an average delay to inform

another node about a state is from 324 to 369 Micro-Seconds.

• Transition: A message to inform another node about a transition contains source

identifiers, target state identifiers, and event identifier. Similar to the State mes-

sage, a transition message takes between 128 to 256 bytes. Thus an average delay

to inform another node about a transition is expected to be from 324 to 369 Micro-

Seconds Micro-Seconds.
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• Termination Token: Size of termination token varies depend on the number of

crawler nodes, number of discovered states, and number of visited states by crawler

nodes. In worst case, the token contains a state identifier for all application states,

and all nodes have visited all states. Among the test applications used in this

thesis, Dyna-Table with 448 states has the largest number of application states.

Assuming we are crawling this application with 20 nodes, termination token can

get as large as 8 Kilo-Bytes. Thus in the worst case scenario where the token is at

its largest size, the average time it takes to send the token from a node to another

is less than 3 milli-seconds.

5.3.2 Time to Calculate the Task to Execute

After execution of an event, the crawler has to calculate the next task to execute. Dif-

ferent crawling strategies run different algorithms to calculate the next task to execute.

In this section we measure the time it takes to calculate the next task to execute.
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Figure 5.3: Time to calculate next to execute as crawling Dyna-Table web application

proceeds, using one node with Breath-First Search Strategy
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Figure 5.4: Time to calculate next to execute as crawling Dyna-Table web application

proceeds, using one node with Depth-First Search Strategy
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Figure 5.5: Time to calculate next to execute as crawling Dyna-Table web application

proceeds, using one node with Greedy Strategy
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Figure 5.6: Time to calculate next to execute as crawling Dyna-Table web application

proceeds, using one node with Probabilistic Strategy

Figures 5.3, 5.4, 5.5 and 5.6 show the time it takes to calculate the next task using

breath-first search, depth-first search, greedy and probabilistic strategies, respectively.

Table 5.1, summarizes these figures and show the average time to calculate the next task.

In these figures y-axis shows the time to calculate the next event, and x-axis represent

the clock since the beginning of the crawl. As the figures show:

• The time to calculate the next task to execute, tends to rise steadily using breath-

first search strategy. In this algorithm, after finishing each task, the crawler looks

for the next task to execute by looking into the seed URL and then the most

immediate children for a task to perform. As the crawl proceeds the algorithm

should go deeper in the graph before it can find a new task. Thus the cost of

running the application tends to increase as the crawl proceeds.

• Unlike breath-first search strategy, in other crawling strategies, the time it takes

to calculate the next task to execute does not always go up as the crawl proceeds.

In the case of depth-first search strategy it is not unusual to find a task to do in

the current state of the application. This results often in very small calculation

times. If, however, the crawler does not find a task close to the current state of the

application, the depth-first search strategy continues its search from the seed URL

which causes large calculation times.
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Table 5.1: Average time to calculate the next event for different crawling strategies,

while crawling Dyna-Table web application with one node

Strategy Depth-First Breath-First Probabilistic Greedy

Search Search

Average Time 11.867 17.459 1.693 0.946

in Milli-Seconds

Table 5.2: Average number of events in a task for different crawling strategies, while

crawling Dyna-Table web application with one node

Strategy Depth-First Breath-First Probabilistic Greedy

Search Search

Average Number 9.85 8.00 1.85 1.67

of Events

• The time it takes to calculate the next task to execute is generally lower in the

greedy algorithm than in both breath-first and depth-first search strategies. In this

algorithm, the crawler does not have to study all options in the current branch,

as it is the case for depth-first search strategy; nor does it have to start from the

seed URL and check all immediate children before going to further children for a

task. Thus the greedy algorithm has a higher chance of finding tasks faster than

the other two algorithms.

• In most cases, it takes the probabilistic strategy similar time it takes the greedy

strategy to calculate the next task. In some cases, however, the algorithm requires

to search further in the application graph before it can find an event that has a

high priority. In these cases, it takes the probabilistic strategy a very long time to

find the next task to execute.

As Figures 5.3, 5.4, 5.5 and 5.6 show, in majority of the cases, it takes a few mil-

liseconds to calculate the next task to execute. Executing the task which often involves

executing several client side events, possibly interacting with the server, and possibly

performing a reset, often takes much longer than calculating the next task to execute.
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5.3.3 Number of events in Tasks

A task is often composed of several events to be executed. The number of events in

each task is the primary factor that determines the time it takes to execute the task.

Different crawling strategies create tasks with different number of events. In this section

we measure the number of events in the tasks calculated by different crawling strategy.
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Figure 5.7: Number of events to execute as crawling Dyna-Table web application

proceeds, using one node running Breath-First Search Strategy
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Figure 5.8: Number of events to execute as crawling Dyna-Table web application

proceeds, using one node running Depth-First Search Strategy
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Figure 5.9: Number of events to execute as crawling Dyna-Table web application

proceeds, using one node running Greedy Strategy
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Figure 5.10: Number of events to execute as crawling Dyna-Table web application

proceeds, using one node running Probabilistic Strategy

Table 5.2, shows the average number of events in each task for different crawling

strategies. Figures 5.7, 5.8, 5.9 and 5.10 show the length of events in tasks created to

crawl Dyna-Table target application, using breath-first search, depth-first search, greedy

and probabilistic strategies, respectively. In these figures y-axis shows the number of

events, and x-axis represent the clock since the beginning of the crawl. As the figures

show:

• As the crawling proceeds, the number of events in tasks increases using the breath-

first search strategy. This length, however, does not increase modestly and in

Dyna-Table application this length can be as high as 14 events.

• The depth-first search strategy often generate tasks with small number of events

in them. In many cases, however, the algorithm is very in-efficient and generates

tasks with a large number of events in them. The unusual large number of events

caused when the first time the crawler discovers a state it is after a long chain of

events. To click on the next event in the state, the crawler has to go through the

same long chain of events.

• The greedy strategy represent a very efficient strategy. As Figure 5.9 shows often

very few events exist in each task. The rare worst case scenario happens with 7

events in a task.
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• The probabilistic strategy has similarities to the greedy strategy. This strategy

often generates tasks similar to the greedy strategy. In some cases however, the

strategy generates tasks with a larger number of events to find new states faster.

This strategy is often as efficient as the greedy strategy, but in the worst case

scenario can generates tasks as long as the one generated using the breath-first

search strategy.

The time it takes to execute individual events depends highly on the target applica-

tion and the server hosting it. Execution of JavaScript events, that do not trigger an

asynchronous call to the server, is substantially faster than the events that interact with

server. For example, in Dyna-Table web application, execution of events that do not

interact with the server always take less than 20 milliseconds. In the same application,

events that do interact with the server often take more than 85 milliseconds to execute,

and can take up to 1.3 seconds.

5.4 Conclusion

This chapter addressed several short-comings of the Dist-RIA Crawler, and measure

performance of several operations:

• A new virtual web browser was described that has the ability to capture client-side

events and handle asynchronous events.

• Several partitioning algorithms were described and performances were compared

against each other.

• The time to send messages of different sizes over the network was measured and

was used to calculate the cost of communication between the nodes.

• The time to calculate the next task to execute and the cost of executing the task in

terms of number of events that has to be run using different strategies is measured.

Additionally, the cost of communication through network was measured.

Next chapter describes two new distributed architectures for crawling RIA with the

ability to run any crawling strategy. Techniques described in this chapter, as well as

the lesson learned by measuring performance overhead of different operations are used

in designing the next RIA crawler.



Chapter 6

Crawling Architectures:

Client-Server and Peer-to-Peer

Chapter 4 introduced our first effort in creating a distributed crawling architecture for

RIAs. This chapter expands our initial effort by introducing new crawling architectures

and relaxing some of the assumptions made in Chapter 4. Two new crawling architectures

introduced in this chapter are called client-server and peer-to-peer.

The rest of this chapter is organized as follows:

• Distribution of crawling control and the architectural choices are discussed in Sec-

tion 6.1.

• Performance properties of different crawling strategies are discussed in Section 6.2.

• The client-server architecture is described in Section 6.3.

• The peer-to-peer architecture is described in Section 6.4.

• Finally, in Section 6.5 we conclude this chapter.

6.1 Distribution of Crawling Control

From a high-level point of view, we can adopt two distributed models to crawl RIAs:

• Client-Server architecture: In this model, nodes rely on a centralized unit to dis-

patch jobs to them.

76
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• Peer-to-Peer architecture: In this model, nodes calculate tasks to do locally and

communicate with each other in a peer-to-peer fashion.

6.1.1 Client-Server Architecture

In this architecture a centralized unit is responsible for allocating tasks to the nodes.

Nodes do not communicate with each other directly and they only communicate with

the centralized unit, henceforth referred to as the coordinator. In this architecture, nodes

contact the coordinator, asking for a task. Based on the crawling strategy, the known

application graph, and the state of the node, the coordinator calculates a task to be

executed and returns the task to the node. The node executes the task and sends the

new transition back to the coordinator while requesting another task to execute.

In this architecture the coordinator keeps the entire application graph. Since the

coordinator calculates the next task to do, nodes do not require to have the knowledge

of the transitions or states in the application graph. Therefore, broadcast is not required

in this architecture.

6.1.2 Peer-to-Peer Architecture

In this architecture, the nodes use partitioning algorithms described in Chapter 5 to

locally determine the next task to execute. Depending on the crawling strategy used,

nodes require different amounts of information:

• To run the breath-first and the depth-first search strategies in a peer-to-peer envi-

ronment, it is sufficient for the nodes to have the knowledge of application states.

To run these strategies, the nodes do not require the transitions to calculate the

next task to execute.

• To run the greedy and the probabilistic strategies, however, the knowledge of tran-

sitions is crucial. Both algorithms require this knowledge to find the closest task

to do. In addition, the probabilistic strategy requires the probabilities that each

type of transition leads, to calculate the probability that a task can lead to a new

state.

• Similar to the greedy and the probabilistic strategies, to run the component-based

strategy, it is required to broadcast states and transitions. In this model, however,
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states are defined differently. A distributed algorithm to run component-based

strategy is described in more details in Chapter B.

Therefore, to run the breath-first and depth-first search strategies, only new states

need to be broadcasted; and to run the greedy and probabilistic strategies both states

and transitions are to be broadcasted to all nodes.

6.1.3 Notations

The following notations are used in the rest of this chapter:

• s: An application state.

• e: An event.

• S: The total number of application states.

• Es: The number of events in the application state s.

6.2 Performance Properties and Architectural Choices

In Chapter 5 we measured the performance of several operations: communication between

nodes, calculating the next task to execute, and the time it takes to execute each task.

As the experimental results in the chapter show:

• The time required for communicating a state or transition between two nodes is

less than a millisecond.

• The time required for calculating the next event to execute is often less than 100

milliseconds.

• The time required for executing a JavaScript event is often between 10 to 1000

milliseconds. A task is often composed of several JavaScript events, so the result

of executing a task can take up to several seconds.

Given the large discrepancies between the time it takes to perform these operations,

and the low network delay, two architectures can be devised:
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• A client-server architecture: The time it takes to execute a task is often an order of

magnitude longer than the time it takes to calculate the task. It is thus reasonable

to expect a good performance if a single unit calculates the next job and dispatches

them to nodes to run the jobs. It is also expected that, as the number of nodes

increases, eventually this unit becomes a bottleneck and the performance of the

crawler remains the same or deteriorate. For example, based on the experimental

measurements presented in Chapter 5, we expect that when crawling Dyna-Table

web application using this architecture, the unit becomes a bottleneck when there

are 12 or more crawler nodes.

Based on this observation, we devise the client-server-based architecture. This

architecture takes advantage of the large gap between the time it takes to calcu-

late the next task compared to executing it, and as explained does not require

broadcasting of transitions for any strategy. Henceforth, we call this architecture

client-server.

• A peer-to-peer architecture: The time it takes to broadcast a message is orders of

magnitude lower than the time it takes to calculate a task or execute it. It is thus

reasonable to expect a good performance from a peer-to-peer architecture where

nodes broadcast states and if necessary transitions. As the number of nodes in-

creases, the number of messages per second increases too, and the network is bound

to become a bottleneck. For example, based on the experimental measurements

presented in Chapter 5, we expect that when both states and transitions are broad-

casted, by crawling Dyna-Table application with 434 nodes or more the network

becomes a bottleneck. Before reaching to this point, however, a good performance

speedup is expected with this architecture.

Based on this observation, we devise a peer-to-peer architecture. This architecture

takes advantage of low network delay and relies on broadcasting the information

needed. Through elimination of any centralized unit, this architecture tries to

achieve a better scalability. Henceforth, this architecture is referred to as peer-to-

peer. We incorporate a batching mechanism to deter network from becoming a

bottleneck.
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6.3 Client-Server Architecture

In this architecture, all nodes transfer the knowledge of new transitions to a special node,

called coordinator. The coordinator maintains the knowledge of the application graph,

calculates tasks to accomplish and dispatches jobs to the nodes. In this client-server

architecture, nodes contact the coordinator and ask for tasks to do. The coordinator

responds with a task and the node executes it. This architecture can be used to run

any algorithm on the server and dispatch the crawling jobs to the client nodes. The

server node is henceforth referred to as the coordinator and the client nodes responsible

to crawl the website are henceforth referred to as the nodes.

Minimally, a task can be a single JavaScript event to execute. This is the case when

a node contacts the coordinator asking for work and there is an un-executed JavaScript

event in the current state of the contacting node. If there is no un-executed JavaScript

event in the current state, the coordinator returns a chain of JavaScript events that first

lead the node to a state with an un-executed events, then have it execute an un-executed

event in that state. A special event can be a reset where the node loads the seed URL

and goes back to the initial state.

6.3.1 Initialization

This architecture contains several crawling nodes. The nodes do not share memory and

work independently of each other. Nodes communicate with the coordinator using a

client-server scheme. The crawling nodes are initialized as follow:

• The coordinator has the seed URL, and the IP address and port number for each

crawler node. Using a combination of IP address and port number allows us to run

multiple crawler nodes on a single computer.

• The crawler nodes have the IP address and port number of the coordinator.

When initialized, the crawler nodes contact the coordinator using its address and ask

for work, and the crawling phase begins.

6.3.2 Algorithm

Initially, the coordinator sends the reset order to the crawler nodes. After loading the

seed URL (i.e. the URL to reach the starting state of the RIA), a node asks for a task
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by sending the hash of the serialized DOM (henceforth referred to as the ID of s), as

well as Es to the coordinator.

In response, the coordinator who has the knowledge of the application graph calcu-

lates the next task to execute based on the crawling strategy. For instance, in the case

of the greedy strategy, the coordinator finds the closest application state to s with an

unexecuted event to the current state of the node. It then constructs a path of events

that the node has to take to reach s and concatenate the path with the unexecuted event

in s. This path is then sent back to the probing node.

If at any point the coordinator realizes that there is no path from the state of the

probing node to a state with unexecuted events, it orders the node to reset. In effect, by

resetting the node jumps back to the seed URL. Since all application states are reachable

from the seed URL, the node will find events to execute after the reset. A node stays

active while there is work available. If no work is available, the node becomes idle. The

node stays in the Idle state until either more work becomes available or a termination

order from the coordinator.

6.3.3 Termination

Detecting termination is trivial, and it has a similarity to Dist-RIA Crawler as described

in Chapter 4. In this architecture the coordinator keeps track of the executed events.

When the following two conditions are met the coordinator initiates the termination

protocol by sending all nodes a Terminate order in response to a new task request:

• There is no Unassigned work in the coordinator i.e. all events in the discovered

states are assigned to the nodes.

• Nodes are all in Idle state.

When the two conditions are satisfied, the coordinator concludes that there is no work

available now (the first condition), and there will not be any work available in future

(the second condition). Therefore it is safe to terminate the crawl.

6.4 Peer-to-Peer Architecture

Unlike the client-server architecture, nodes in the peer-to-peer architecture cannot rely

on a centralized unit to collect and disseminate the information among the nodes. To run
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the greedy and the probabilistic strategies on the peer-to-peer architecture, it is required

to broadcast the knowledge of new transitions to all nodes.

6.4.1 Initialization

In this architecture, the following information are global knowledge:

• The IP address and the port number of all nodes.

• The seed URL.

• The overlay network for broadcasting.

• The node identifier of each node. This identifier is a unique number from 0 to the

number of nodes minus one.

Nodes are initialized with these information before crawling begins.

6.4.2 Algorithm

Nodes in the peer-to-peer architecture can be in four states of Awake, Working, Idle, and

Terminated. Initially all nodes are in the Awake state. The crawl starts when the node

with node identifier 0 broadcasts a message that moves all nodes to the Working state.

In this state nodes run the crawling algorithm. Nodes find the next event to execute

locally and deterministically. When a node is done with all of the events to execute, it

will go to the Idle state. Every time the node discovers and executes an event it will

broadcast the information as described earlier.

If the node has nothing to do it goes to the Idle state. In this state the node waits

for the termination state token or a new state. If a new state becomes available, it goes

back to the Working state. If the termination token arrives, the node runs termination

algorithm to determine termination status. This algorithm is described in details in the

next section.

6.4.3 Termination

Since there is no centralized unit in the peer-to-peer architecture, a peer-to-peer protocol

is used to determine termination. The termination protocol runs along with the crawling

algorithm throughout the crawling phase. This protocol works by passing a token called
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termination state token around a ring overlay network that goes through every node.

The termination token contains the following objects:

• List of state IDs for discovered application states: This list has an element per

discovered state. As the token goes around the ring more state IDs are added to

this list.

• Number of known application states for each node: When the token visits a node,

the node counts the number of application states it knows about and reflect them

in this list.

Using the information stored in the token, the termination algorithm described below

decides weather to pass the token to the next node, or initiate termination.

Termination Algorithm

When the token arrives at a node, the node is either in the Working or Idle state. If it

is in the Working state it will continue executing tasks and hold on to the token until it

goes into the Idle state. In the Idle state the node performs the following steps:

1. The node updates the token with the new application states it knows about that

are not yet included in the token.

2. The node updates the number of states it knows about in the token.

3. If the status of the node is not indicated to be Idle in the token, the node updates

its status to Idle in the token. This situation happens if this is the very first time

the node takes the token. Initially status of all nodes is set to Active in the token.

As the node goes around the ring, it can only pass a node if the node is in idle

state. Thus after one round of going around the ring, all nodes status will be Idle.

4. The node loops through the list of node states in the token and if it finds at least

one node that is in Working state, the node passes the token to the next node in

the ring.

5. If all nodes are in Idle state in the token, the node loops through the list of number

of known states to each node in the token and compares the number of known

states for each node against the number of application state IDs in the token. If

there is at least one node that does not know all states discovered, the node passes

the token to the next node.
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6. If the last two steps do not pass the token to the next node, the node concludes

that crawling is over and it initiates a termination by broadcasting a termination

order to all the nodes.

Proof of correctness

Let us assume that the algorithm is not correct and the termination is initiated while

there are still events to execute. Without loss of generality let us assume node A initiated

the termination order. Since there is at least one event to execute there is at least one

node that is not idle. Let us refer to this node as node B. The termination order cannot

be initiated if the token indicates that node B is not in idle state. Thus, node B was in

idle state when the token visited it after node B passed the token to the next node, a

message arrived to it with a new state and the node became busy. Let us call the sender

of the message node C. Node C can either be one of the nodes that the token visited on

its way from node B to node A, or one of the nodes outside this path.

Node C cannot be one of the nodes that the termination token visited on its way

from node B to node A. If that was the case, on its visit to node C the new state would

be added to the list of application states in the token, the termination order would not

be initiated by node A since the number of states known by node B was lower than the

number of application states known in the token. So node C is not visited by the token

on its way from node B to node A.

For the same reason that was stated for node B, node C was idle at the time the token

visited it and another node send it a message with a new state. The sender, henceforth

referred to as node D cannot be on the way from node C to node A, for the same reason

node C cannot be on the way from node B to node A.

This reasoning does not stop to node D and it continues indefinitely. Since number

of nodes that are not on the way of token from the sender node to node A is finite,

eventually we run out of nodes to be potential senders, and thus the initial message

telling node B about a new state could have never been initiated. Thus the termination

algorithm is proven to be correct by contradiction.

6.5 Conclusion

This chapter used experiments and techniques discussed in Chapter 5 to make high level

decisions about possible distributed crawling architectures. Based on these decisions
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two new distributed architectures to crawl RIAs, a client-server and a peer-to-peer one,

are described. Both architectures can incorporate any crawling strategy, including the

greedy and the probabilistic model.

Chapter 7 experimentally evaluates the performance of the three crawler against each

other on four different web applications.



Chapter 7

Experimental Results

In this chapter we study the relative performance of peer-to-peer and client-server ar-

chitectures. Additionally, we study performance of the peer-to-peer architecture in more

depth. This chapter contains the following sections:

• The testing environment and the target web applications are described in Section

7.1.

• The performance criteria for the comparison are explained in Section 7.2.

• Experimental results to compare performance of client-server architecture against

peer-to-peer architecture are explained in Section 7.3:

– Experimental results on the time it takes to finish the crawl in Section 7.3.1.

– Experimental results on the time it takes to discover new application states

in Section 7.3.2.

– In Section 7.3.3, we discuss about the relative performance of the two archi-

tectures.

• Experimental results on running different crawling strategies on the peer-to-peer

architecture are explained in Section 7.4:

– Experimental results on the time it takes to finish the crawl in Section 7.4.1.

– Experimental results on the time it takes to discover new application states

in Section 7.4.2.

86
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– In Section 7.4.3, we discuss about the experimental results presented in Sec-

tions 7.4.1 and 7.4.2.

• Finally this chapter is concluded in Section 7.5.

7.1 Test-Bed

For experimental results discussed in this chapter, the nodes and the coordinator are

implemented as follow:

• The JavaScript engine in the nodes are implemented using PhantomJS 1.9.2.

• Strategies are implemented in the C programming language and GCC version 4.4.7

is used to compile them.

• All crawlers, and the coordinator, use the Message Passing Interface (MPI)[114] as

the communication mechanism. MPI is an open standard communication middle-

ware developed by a group of researchers with background both in academia and

industry. MPI aims at creating a communication system that is interoperable and

portable across a wide variety of hardware and software platforms. Efficient, scal-

able, and open source implementations of MPI are available such as OpenMPI[52]

and MPICH[63]. MPICH version 3.0.4 is used to implement the communication

channel in our experiments.

• All nodes, as well as the coordinator in case of client-server architecture, run on

Linux kernel 2.6.

The nodes are hosted on Intel® Core(TM)2 Duo CPU E8400 @ 3.00GHz and 3GB of

RAM. The coordinator is hosted on Intel® Xeon® CPU X5675 @ 3.07GHz and 24GB

of RAM. The communication happens over a 10 Gbps local area network. We ran each

experiment three times and the presented numbers are the average of those runs.

To compare the relative performance of the crawler, we implemented all crawlers in

the same programming language and used MPI as communication channel. In all cases

the C programming language is used to calculate the next task to do.

In the client-server architecture, nodes only communicate with the coordinator, and

coordinator calculates the next task to perform. In the peer-to-peer architecture, nodes
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Table 7.1: Implementation summary of different crawling architectures

Architecture Communication Termination Calculation

Topology Protocol of Next Task

Client-Server Star By coordinator By coordinator

Peer-to-Peer Fully connected Ring-based By node

communicate directly through MPI. In the peer-to-peer architecture calculation of the

next task to execute happens on each node locally.

Table 7.1 summarizes certain implementation aspects of the three architectures.

In order to compare the performance of the two architectures we crawled six different

target web applications using all web crawlers. In all cases we used breath-first and

Greedy search strategies. Six target applications are chosen to measure the performance

of the crawler. Except for Test-RIA, all the target web applications are real world web

applications and none of them are developed for the purpose of this thesis. The target

web applications are chosen based on their size, complexity and client side features they

use. They are explained in the following.

7.1.1 Test-RIA

Test-RIA (Figure 7.1) is a toy example created by our team to measure efficiency and

performance of a web crawler on a simple RIA. Albeit small, this example incorporates

many features of JavaScript that pose a challenge to web-crawlers, such as attached

events and asynchronous calls. This application has 39 states and a total of 305 events.

7.1.2 Altoro-Mutual

Altoro-Mutual (Figure 7.2) is a web application created by IBM to test web crawlers and

security scanners. This website simulates a fake e-commerce system.

This application is developed using ASP.NET, runs on a Windows Operating System

with IIS, and has 45 states and 1, 210 events.

7.1.3 Dyna-Table

Dyna-Table (Figure 7.3) is a real world example of a JavaScript widget, with asyn-

chronous calls ability, that is incorporated into larger RIAs. This widget helps developer
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Figure 7.1: Test-RIA screen-shot

Figure 7.2: Test-RIA screen-shot
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Figure 7.3: Test-RIA screen-shot

to handle large interactive tables. It allows to show a fixed number of rows per page, to

navigate through different pages, to filter content of a table based on given criteria, and

to sort the rows based on different fields.

This application was developed using the Google Web Toolkit and has 448 states and

a total of 5, 380 events.

7.1.4 Periodic-Table

This educational open source application creates an interactive periodic table (Figure

7.4). This application allows the user to click on each element and show the user infor-

mation about the element in a pop-up window. The application can display the periodic

table in two modes: the small mode, and the large mode. The two modes are identical in

terms of functionality, however they offer two very different interfaces. Once an element

is clicked and the pop-up window shows up for the element, other elements can be clicked

or the pop-up window can be closed.

This application is the largest target application we use. It is developed in PHP and

JavaScript, and it has 240 states and a total of 29, 040 events.
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Figure 7.4: Test-RIA screen-shot

7.1.5 ClipMarks

ClipMarks is a RIA that allows the user to share contents from other websites, with

other members of the ClipMarks (Figure 7.5). List of shared contents (called Clips) is

available on the first page of the application. Users can vote on a clip, and the number

of users who have voted on a clip shows up next to the clip. By clicking on the number,

the list users who voted to the clip pops-up. Items within this pop-up window are linked

to individual user profiles. By going to a user profile, it is possible to see the list of clips

shared by the user.

This application has 129 states and a total of 10, 580 events.

7.1.6 Elfinder

Elfinder is an open source and interactive RIA file-browser (Figure 7.6). This application

allows the user to interact with individual files and folders on the server. The user can

create, modify, delete and view files and folders. To simplify the application, and avoid

state explosion, we disabled the application from modifying and deleting contents on the

server. This application has 1, 360 states and a total of 43, 816 events.
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Figure 7.5: ClipMarks screen-shot

Figure 7.6: Elfinder screen-shot
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Table 7.2: Target applications graph summary

Application Number Number of Minimum Maximum Average

Name of States Transitions Events Events Events

per Page per Page per Page

Test-RIA 39 305 5 10 7.82

Altra-Mutual 45 1,210 3 34 26.89

Dyna-Table 448 5,380 12 13 12.01

Periodic-Table 240 29,040 119 122 121.00

Clipmarks 129 10,581 69 129 82.02

Elfinder 1360 43,817 15 1359 32.22

7.1.7 Summary of Test Applications

Table 7.2 shows some information about the graph of the target web applications. As

the table shows, the four test beds represent four category of web applications:

1. Test-RIA represents small size RIAs. These applications have a small number of

states, and a small number of events per page. Also the number of events per page

do not change significantly from page to page.

2. Altoro-Mutual represents a medium size RIA. This application has a larger number

of events per page than Test-RIA, however, there are pages where the number of

events are lower than the number of web crawlers we have used.

3. Dyna-Table shows a large size RIA with a small number of events per page.

4. Periodic-Table, ClipMarks, and Elfinder show large size RIAs with a large number

of events per page. In these application all states have more events per page than

the number of web crawlers and the application graph is dense.

7.2 Comparison Criteria

We have compared the performance of the crawlers in two ways:

1. The total time of the crawl: This factor measures how fast the crawler can explore

the entire application graph and execute all transitions. Ultimately the focus of
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this thesis is to reduce the time it takes to crawl RIAs and this factor comes first,

naturally.

2. Efficiency of the crawler in terms of state discovery: This factor measures how

quickly the crawler discovers new states. Early discovery of states have many

important implications. Firstly, in case of a partial crawl it is useful to have as

many states as early as possible in the crawl. Secondly, discovering states early in

the crawl increases the chance of finding faulty states earlier. Lastly, discovering

states early in the crawl helps preventing nodes from being idle while other nodes

are discovering new states. Efficiently of state discovery depends largely on the

crawling strategy[36].

We measure the performance of the two architectures using two crawling strategies:

1. Breath-First search strategy: In this strategy, nodes perform a breath-first search

from the root. If during event execution the application graph changes by other

nodes (i.e. new states are discovered or new transitions are added due to other

nodes), the node starts a new breath-first search from the root.

2. Greedy strategy[102]: In this strategy nodes start by performing the greedy algo-

rithm from the root. After performing the first task, when a node requires the

calculation of the next task to execute, the latest known application graph is used

to perform a greedy algorithm from the current state of the application, and this

step is repeated until the node terminates. Similar to the breath-first search strat-

egy, JavaScript events on the page are partitioned based on their location on the

DOM.
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7.3 Experimental Results: Client-Server versus Peer-

to-Peer

7.3.1 Time to finish crawl
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Figure 7.7: The total time to crawl Test-RIA in parallel using different architectures
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Figure 7.8: The total time to crawl Altra-Mutual in parallel using using different

architectures
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Figure 7.9: The total time to crawl Dyna-Table in parallel using using different

architectures
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Figure 7.10: The total time to crawl Periodic-Table in parallel using using different

architectures
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Figure 7.11: The total time to crawl Clipmarks in parallel using using different

architectures
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Figure 7.12: The total time to crawl Elfinder in parallel using using different

architectures
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7.3.2 Time to Discover New States
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Figure 7.13: Cost of discovering Test-RIA application states using different

architectures
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Figure 7.14: Cost of discovering Altra-Mutual application states using different

architectures
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Figure 7.15: Cost of discovering Dyna-Table application states using different

architectures
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Figure 7.16: Cost of discovering Periodic-Table application states using different

architectures
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Figure 7.17: Cost of discovering Clipmarks application states using different

architectures
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Figure 7.18: Cost of discovering Elfinder application states using different architectures

7.3.3 Discussion

Figures 7.7, 7.8, 7.9, 7.10, 7.11 and 7.12 show the time it takes to crawl Test-RIA,

Altra-Mutual, Dyna-Table, Periodic-Table, Clipmarks and Elfinder web applications us-

ing different architectures. Table 7.3 summarizes these experimental results. As the

figures show:
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Table 7.3: Speedup achieved using peer-to-peer architecture with 20 nodes, compared

to client-server architecture

Application Name BFS Strategy Speedup Greedy Strategy Speedup

Test-RIA 1.36 1.56

Altra-Mutual 4.90 6.58

Dyna-Table 1.30 3.20

Periodic-Table 1.18 8.28

Clip-Marks 1.15 1.42

elfinder 1.14 1.38

• Peer-to-Peer architecture scales better than the Client-Server architecture. The

coordinator in Client-Server architecture becomes a bottleneck as the number of

nodes increases and reaches 11 to 15 nodes.

• In both architectures, distributed greedy strategy outperforms distributed breath-

first search strategy. This observation is compatible with the experimental results

presented by Dincturk et al.[36].

• As the number of nodes increases, performance of Client-Server architecture suffers

more in smaller web application, compared to the larger ones. This is the case,

because in the larger applications, calculated tasks are more time consuming and

the coordinator has more time to calculate next task to execute.

7.4 Detailed Experimental Results for the Peer-to-

Peer Architecture

As explained in Section 7.3, the peer-to-peer architecture is superior to the client-server

architecture. This section studies peer-to-peer architecture in more details. In addition

to the greedy and breath-first search strategies, in this section we experiment with depth-

first and probabilistic search strategies:

• Depth-First search strategy: In this strategy, nodes perform a depth-first search

from the root. If during event execution the application graph changes a new

depth-first search is began from the root. Similar to breath-first search strategy,

JavaScript events on the page are partitioned based on their location in the DOM.
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• Probabilistic strategy[38]: In this strategy nodes start by performing the proba-

bilistic algorithm from the root. Similar to the greedy algorithm, after performing

the first task, the node always uses the latest known application graph to calculate

the next task to execute from the current state of the application. Unlike other

strategies, in this strategy, JavaScript events are assigned to the nodes based on

their type. Because an event type is always assigned to the same node, the node

has the history of event execution. By having this history, the node can calculate

the probability of reaching a new state by executing the event autonomously.

7.4.1 Time to finish crawl
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Figure 7.19: The total time to crawl the Test-RIA with multiple nodes in peer-to-peer

architecture.
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Figure 7.20: The total time to crawl the Altra-Mutual with multiple nodes in

peer-to-peer architecture.
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Figure 7.21: The total time to crawl the Dyna-Table with multiple nodes in

peer-to-peer architecture.
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Figure 7.22: The total time to crawl the Periodic-Table with multiple nodes in

peer-to-peer architecture.
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Figure 7.23: The total time to crawl the Clipmarks with multiple nodes in peer-to-peer

architecture.
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Figure 7.24: The total time to crawl the Elfinder with multiple nodes in peer-to-peer

architecture.

7.4.2 Time to Discover New States
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Figure 7.25: Cost of discovering Test-RIA application states using the peer-to-peer

architecture
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Figure 7.26: Cost of discovering Altra-Mutual application states using the peer-to-peer

architecture
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Figure 7.27: Cost of discovering Dyna-Table application states using the peer-to-peer

architecture
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Figure 7.28: Cost of discovering Periodic-Table application states using the

peer-to-peer architecture

1 2 4 8

1
6 1 2 4 8

1
6 1 2 4 8

1
6 1 2 4 8

1
6

103

104

105

106

107

DFS Strategy BFS Strategy Probabilistic Strategy Greedy Strategy

T
im

e
in

M
il
li
-S
ec
o
n
d
s

Figure 7.29: Cost of discovering Clipmarks application states using the peer-to-peer

architecture
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Figure 7.30: Cost of discovering Elfinder application states using the peer-to-peer

architecture

7.4.3 Discussion

Figures 7.19, 7.20, 7.21, 7.22, 7.23 and 7.24 show the time it takes crawl Test-RIA,

Altra-Mutual, Dyna-Table, Periodic-Table, Clipmarks and Elfinder web application using

the peer-to-peer architecture with different crawling strategies. As the figures show,

performance of crawling strategies is not degraded as number of nodes increases. Similar

to the results presented by Dincturk[36], the greedy strategy outperforms other strategies.

Figures 7.25, 7.26, 7.27, 7.28, 7.29, and 7.30, show the time it takes to discover new

application states using the peer-to-peer architecture. As the figures show, in most cases

by increasing the number of crawler nodes, the time it takes to discover new applications

states, reduces. This is not always the case, however, and in some cases (such as the

case when crawling Periodic-Table using the probabilistic or greedy strategy), one node

is more efficient than two nodes in discovering application states early. The greedy

and the probabilistic strategies, look for the closest un-executed task. This happens

since, in rare cases, partitioning algorithm allocates events, that lead to the discovery of

new application states, to nodes that are busy executing events that do not lead to the

discovery of new application states. This in-efficiency caused by the partition algorithm

does not happen when crawling the web applications with one node, since all events are

allocated to the node itself.

We expect that the peer-to-peer architecture scales well for the large applications. In
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the test examples presented, the last two test beds (i.e. Clipmarks and Elfinder), are

good representations of what to expect when crawling large web applications with the

peer-to-peer architecture. These two applications satisfy our assumption on number of

events per page, and they have a large number of states. As our experimental results

suggest, in such cases, the three strategies of greedy, breath-first and depth-first search,

scale well on the peer-to-peer architecture, and a constant speedup (both on the time

it takes to finish the crawl, and the time it takes to discover new application states) is

observed as the number of nodes increases.

7.5 Conclusion

This chapter studied the relative performance of of the Client-Server and Peer-to-Peer ar-

chitectures. To measure the performance of the crawlers against each other, all crawlers

are implemented with MPI communication channel and the same programming lan-

guages. As the comparison between the performance of the crawlers show, the peer-

to-peer architecture scales better than the client-server architecture. The chapter then

experimented with peer-to-peer architecture in more details.

Next chapter talks about further increasing the efficiency of the crawlers by incorpo-

rating load-balancing mechanisms.
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Conclusion and Future Directions

RIAs are the new generation of web applications that shift part of the computation

from the server to the client. This shift improves web applications by making them

more interactive and user friendly. It further reduces the server workload and increases

the scalability of the web applications. Inclusion of client-side events comes with a cost:

Crawling web applications is no longer as easy as retrieving the contents of the application

URLs.

To crawl RIAs, a web crawler has to run a virtual web browser, emulate a user,

identify different states of the application, and execute client-side events on all states.

The further complication is that, unlike traditional web applications where the state of

the application is reachable by going to the corresponding URL, to reach a state of the

application the crawler has to perform multiple client-side events before it reaches the

target state. For a large web application this process is very time consuming.

In this thesis we addressed the problem of reducing the time it takes to crawl RIAs.

We used principles in parallel processing and distributed computing to reduce the time

it takes to crawl RIAs by using concurrent crawlers. We proposed different mechanisms

and architectures to break down sequential crawling algorithm into smaller independent

tasks and we used multiple nodes to crawl RIAs. To perform a crawl in parallel we

introduced the concept of task partitioning in the context of RIAs crawling. We ap-

plied the concept to four different crawling strategies of breath-first, depth-first, greedy

and probabilistic strategies. Experimental results are presented and running the greedy

strategy on the peer-to-peer architecture achieved the best performance as the num-

ber of crawlers increases. This thesis then talks about theoretical improvements on the

proposed algorithms in two fronts: load-balancing, and component-based crawling.
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Some of the contributions of this thesis include:

• Partitioning Algorithm: To the best of our knowledge, this work is the first work

that formally introduces partitioning algorithms in the context of RIA crawling.

Previously introduced partitioning algorithms are not suitable for RIA crawling,

since they partition the tasks at a higher granularity of URLs. In this thesis, we

introduced autonomous and deterministic partitioning algorithms that assign tasks

to the nodes almost equally.

• Distributed Crawling Architectures for RIA: This thesis is the first work to introduce

distributed crawling architectures for RIAs. We formally described two crawling

architectures: a peer-to-peer architecture and a client-server one. To design these

two architectures, we measure various time consuming factors for crawling RIAs

and engineered the two architectures to be practical and efficient.

• Performance Measurement : We thoroughly measured the performance of the intro-

duced architectures in practice by implementing the crawlers and crawling six web

applications with multiple nodes. The investigation of performances described in

this thesis shows that the peer-to-peer architecture is more efficient than the client-

server architecture and scales better. Our experimental results suggest that, given

a large enough web application, the peer-to-peer architecture can scale up to 400

nodes, before the network become a bottleneck and the performance deteriorates.

• Load-Balancing Algorithms : To the best of our knowledge, this thesis is the first

study that describes load-balancing algorithms in the context of RIA crawling. Pre-

viously introduced load-balancing algorithms are based for traditional web applica-

tions. Our newly introduced load-balancing algorithms take into account client-side

events, and suits the RIA environment better.

• Distributed component-based crawling : This work is the first study that addresses

distributed, recently introduced, component-based crawling. Component-based

crawling defines states and events differently from other crawling strategies. There-

fore, partitioning algorithms defined previously cannot be used by this algorithm.

We suggest two approaches based on gate-keeper and handlers. The two described

approaches are compatible with the component-based crawling, and can be used

to parallelize the algorithm.
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8.1 Future Directions

Some future directions of research are:

8.1.1 Cloud Computing

One of the implicit assumptions of this thesis is that number of computers available to

crawl a RIA does not change during the crawl. This restriction hinders us from taking

advantage of cloud computing and cloud elasticity. By relaxing this assumption, the

crawler can better utilize resources available to it.

8.1.2 Fault Tolerance

Another assumption we made in this thesis is that all crawler nodes and the communi-

cation medium are reliable. To relaxing this assumption (i.e. assuming that some nodes

may terminate unexpectedly or that the communication medium may fail to deliver some

messages), it is necessary to find recovery mechanisms suitable for the environment.

8.1.3 Integrating into Traditional Distributed Crawlers

Crawling literature is rich in describing distributed solutions to crawl traditional web

applications. To the best of our knowledge, this thesis is the first effort to crawl RIAs

in parallel. An enhancement to this work is to consider RIAs that have a large number

of URLs, and each URL is associated with a large number of states. In this scenario,

there are as many seed states as the number of URLs, and a new partitioning algorithm

is required that not only considers events, but also considers seed URLs.

8.1.4 Relaxing Assumptions about RIAs

In this thesis we made several assumptions about the target RIAs. Two of the as-

sumptions are particularly limiting: The assumption about determinism of the RIA,

and the assumption about lack of external events. These assumptions are not particular

to distributed crawling, but relaxing them can affect partitioning algorithms and thus

distributed crawling.

A large number of applications do not satisfy these assumptions. User sessions,

visitor counters, random advertisement widgets and news feeds are some examples that

break the first assumptions. HTML5 web-sockets and Comet are examples that break
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the second assumption. Relaxing these assumptions may require redefining partitioning

algorithms and finding new crawling architectures.

8.1.5 Impact of Architectural Parameters

In this thesis, we assumed that new transitions are broadcasted in the peer-to-peer

architecture, as soon as they become available. Study of the impact of this assumption

is missing from this thesis. More formally, the impact of the following two assumptions

is missing:

• Frequency of broadcasting: To utilize the network better, it may be more

efficient not to broadcast the new transitions as they become available, but to

broadcast them in batches, or broadcast them in certain intervals.

• Event sharing: Not all transitions have a major impact on reducing the time

it takes to crawl the RIA. Sharing only a sub-set of transitions, instead of all

transitions, may not increase the time it takes to crawl the RIA, while it reduces

network traffic.
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Appendix A

Load Balancing Approaches

The algorithms and architectures introduced in this thesis, assumed that all nodes have

equal processing powers, and thus assigned them equal shares of work. Our distributed

model risks to make a set of nodes bottleneck if nodes are not homogeneous. Also the

static partitioning algorithm used in peer-to-peer architecture is not perfect: If the speed

of nodes is known before the crawling begins, the partitioning algorithm can adopt to

it. Further we assumed that the processing power of a node does not change during

the course of the crawl. Non-homogeneous computing and elasticity of the computing

resources available, are patterns frequent, but not popular in cloud-computing.

This appendix introduces mechanisms to share and transfer workload among the

nodes. These algorithms, referred to as load-balancing algorithms, are used to decide how

to assign tasks to the crawlers. Different assignments of tasks to the crawlers result in

different workload and communication patterns among the nodes. Five load balancing

approaches are introduced. Note the ideas presented are not implemented. We leave

implementation of the presented ideas and experimenting with them to future studies.

Due to the lack of implementation at this point, the contents of this appendix is not

included in the thesis as a chapter.

The rest of this appendix is organized as follows:

• In Section A.1, we introduce the load-balancing algorithms used by the distributed

traditional web-crawlers in the literature and explain how to apply them to rich

internet applications.

• In Section A.2 we formally introduce the terms we use to construct our load-

balancing algorithms.
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• In Section A.3 we explain adaptation of two load-balancing algorithms introduced

in the literature to rich internet application crawlers.

• In Section A.4 we introduce three new load-balancing algorithms.

• In Section A.5 we discuss the communication pattern among the nodes in different

load-balancing approaches. Finally, In Section A.6 we conclude this appendix.

A.1 Introduction

Designing efficient and scalable parallel web crawlers has been the topic of extensive

research for more than two decades[96]. Many efficient and scalable solutions are of-

fered using distributed platforms[26]. Cho and Garcia-Molina[26] categorize distributed

crawlers based on their communication patterns into three main categories:

• Independent approach: In this approach, nodes work independently, each with a

separate set of seed URLs. Due to the lack of communication among the nodes,

pages visited by different nodes may overlap.

• Static approach: In this approach a set of homogeneous nodes partition the search

space among themselves, and operate without any centralized coordination unit.

Upon encountering a task, the crawler examines the task and decides whether the

task belongs to it or not. Depending on the architecture, should a task belong

to another node, the finder node may or may not communicate the task to its

owner[26].

• Dynamic approach: In this approach nodes rely on a centralized coordination unit

that gathers all tasks and allocates them to the nodes. Upon discovering a new

task, the node will inform the unit and should it be the first time the unit receives

the task the unit adds the task to a task queue. Nodes then ask the unit for task,

and the unit assigns the tasks to the probing nodes, and remove the assigned tasks

from its queue. [25]

Due to the lack of communication, the independent approach does not guarantee

absence of overlaps between the scope of different crawlers. Authors suggest mechanisms

to reduce the overlaps to a certain degree with a certain amount of messages among the

nodes. Since the purpose of this thesis is to discover all of the application states, we do

not study this category.
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We borrow the static and dynamic approaches described in the traditional web-

crawling literature and adopt them to RIA crawling. In addition to these two approaches,

three novel approaches are introduced. These novel task assignment algorithms are called

Hybrid Assignment, Adaptive Assignment, and Lazy-Adaptive Assignment. The rest of

this appendix introduces the tasks of RIA crawling more formally, then describes each

of the load balancing approaches in detail.

A.2 Definitions

The following definitions are used in the rest of this appendix:

• E: The total number of events in all application states.

• N : Number of crawler nodes.

• i: Node identifier, where 1 ≤ i ≤ N .

• Te: The time it takes to execute event e.

• Taverage: The average time it takes to execute an event.

• Ii: The average idle time of node i, expressed in the form of ratio of full crawling

time.

• Iaverage: The average idle time of nodes, expressed in the form of ratio of full

crawling time. We assume that this number is known from the previous runs, and

we use this number to optimize some of the algorithms.

In addition to the above-mentioned terms, previously defined terms of s, e, S and Es

are also used in this appendix. For definition of these terms see Section 6.1.3.

A.3 Adapting static and dynamic approaches to RIA

crawling

Originally, static and dynamic approaches are described in the context of distributed

crawling of traditional web applications. In this section, we first briefly explain the

approaches as they are used in the context of traditional web crawler, then explain how

to adopt them to crawling RIAs.
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A.3.1 Static

In this approach nodes are peers. When a node discovers a new URL, it calculates locally

and deterministically the node responsible to crawl the URL and send a message to the

node responsible informing it about the URL. Often hash functions are used to map

URLs to the set of crawling nodes.

In the context of traditional web crawling, partitioning of the work happens on URL

granularity. A URL can be associated with many states in a RIA, and thus it is not

practical to use URLs to partition the search space in static approach. Two other ways

to partition to search space are: by application states, and by events. The latter approach

is superior to the former approach. In the former approach a node responsible to crawl

a state has to execute all events in that state. As such it has to keep going back to

the state. After each event execution, the node may end up in another state and the

probability that the new state belongs to the node is low. Thus there is no work to be

done in the new state, and the node simply has to find its way back to a state that

belongs to it.

The latter approach (i.e. partitioning by events) does not have this shortcoming: No

matter at what state the node ends up after executing an event, there is a good chance

there are events in this state that belongs to the node. As such we adopt the static

approach to RIA crawling by partitioning the search space based on events. In this

approach: when a node discovers a new application state, it propagates it to the other

nodes. Upon learning about a new state, the node runs a local partitioning algorithm

and based on the output of the algorithm, the node finds the tasks that belong to it in

this state. All the tasks are performed; while the partitioning algorithm ensures that no

task is performed by more than one crawler.

The static approach avoids overlaps and scales well, grateful to its peer-to-peer archi-

tecture. This approach, however, merely assumes that all nodes are equivalent in their

processing power. Should a task take a long time to complete and a node becomes a

bottleneck, this approach has no means to alleviate the problem. Dist-RIA Crawler and

the peer-to-peer architecture are constructed following this approach.

A.3.2 Dynamic

In the context of traditional web application crawling, a single server keeps track of all

discovered URLs. Crawler units contact this server and ask for URLs to crawl. The

server returns a set of URLs to these units and flags them as visited. For the same
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reason explained in the previous section, to adopt this approach to RIA crawling, URLs

can be used by the centralized unit. Similarly, assigning an state to a crawler on fly may

not be efficient, since the crawler has to keep executing long chain of events to go back

to the state.

Similar to the static approach, this approach can be adopted to RIA crawling by

partitioning the search space based on the events. In the adopted approach, a centralized

unit keeps track of all events. Idle nodes contact this coordination unit and request tasks.

The coordination unit returns a task to the probing node. In essence a task is an un-

executed event. It is however, necessary sometimes to execute a path of events before

reaching to a state that hosts the un-executed event. In these cases a task is composed

of a chain of events, concatenated by the un-executed event. After the task is returned

to the probing node, the centralized unit removes the event from its list of un-executed

events.

The dynamic approach avoids overlaps among the nodes and it achieves a perfect load

balancing: working nodes only ask for new tasks when they are free, thus no working node

becomes a bottleneck. This approach, however, is not scalable since the centralized unit

may become a bottleneck, as the number of nodes increases. Client-Server architecture

is constructed based on this approach.

A.4 New Load Balancing Approaches

In an attempt to take advantages of the dynamic and static approaches, we propose

two new approaches, which conceptually have elements from both dynamic and static

approaches. These two new approaches are called hybrid and adaptive approaches. A

third approach, called lazy-adaptive approach is introduced subsequently and combines

the two.

A.4.1 Hybrid approach

Assuming we have an estimate of the percentage of the time a node is idle in the static

approach, the hybrid approach is a simple mechanism to balance the load by reserving

and keeping some of the tasks for idle nodes. In the hybrid approach, like in the static

approach, nodes locally determine the portion of the work that belongs to them, and

communicate the rest of the work to the responsible nodes. In addition, this approach

incorporates a load balancing mechanism to transfer certain tasks among the nodes.
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In the hybrid approach, there is a coordination station in the system with no crawling

power. This node merely acts as a storage unit, and it is allocated a portion of the tasks.

This portion, referred to as reserved tasks, is not allocated to any node in particular.

When a crawling node becomes idle, it will contact the coordination station and asks for

some of the reserved tasks. This approach is thus a hybrid of static and dynamic ap-

proaches: some of the tasks are allocated statically, and some are allocated dynamically;

hence the name “hybrid”.

The coordination unit keeps track of the reserved tasks. The unit creates a reserved

task per reserved event, and waits for an idle node to request it. The hybrid approach

uses the following algorithm to determine which events are considered reserved: The

ratio of events that are reserved in each state is called reserved ratio (RR). When the

coordination station learns about a new state s, it calculates the number of reserved

events in s (called reserved tasks in s or RTs) by multiplying reserved ratio by Es. The

coordination station then takes the last RTs events in s and create one reserved task

per event. The partitioning algorithm on the crawling nodes, uses the same formula to

determine the reserved events. After identifying the reserved events, the partitioning

algorithm exclude these events and partitions the rest of the events for crawling.

When a node becomes idle, it contacts the coordination station, and the coordination

station returns one of the reserved tasks to the probing node. The returned reserved task

is removed from the list of tasks in the coordination station. This process continues until

all of the nodes are in the idle state, and the coordination station has no reserved task

left.

Assuming on average each node is idle Iaverage percent of the time and busy 1 −
Iaverage percent of the times, RR can be calculated as:

RR = MIN(1, Iaverage ×N)

By using this formula, the approach tries to set aside enough events that can be

allocated to idle nodes and make them busy. This formula shows how the hybrid approach

is equal to the static and dynamic approaches given different average idle times:

• If on average nodes are idle more than
1

N
percent of the times, the formula becomes

RR = 1 and, in effect, the load balancing algorithm becomes the dynamic approach

where all tasks are stored on the coordinator, and it the coordinator dispatches the

jobs as nodes become idle.
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• If there are no idle times, then the formula becomes RR = 0 and, in effect, the

load balancing algorithm becomes the static approach where the nodes calculate

the tasks locally and autonomously, without any centralized unit to dispatch tasks

to idle nodes.

A.4.2 Adaptive approach

The hybrid approach is a simple method to reserve some of the tasks for future idle nodes.

This method assumes that knowledge of the average idle times is available prior to crawl.

If the knowledge of the idle times is not available, the hybrid approach may not have a

good performance. In this section we introduce an adaptive approach, an approach that

learns about the idle times and relative speed of different nodes as the crawl proceeds

and based on the gathered information dynamically modifies the partitioning algorithm.

More formally, the adaptive approach is similar to the static approach, with the

following change: As the crawling proceeds, this approach adjusts the portion of tasks

assigned to each node. The manipulation of the portion assigned to the nodes is used

as a tool to reduce the workload of the overloaded nodes, and increase the workload

of the idle nodes. Further, the approach is similar to the dynamic approach in that a

coordinator allocates the tasks to the nodes at the time of their discovery, except that

tasks are not assigned equally, but assigned based on the perceived computational speed

of the node.

In this approach, every time a new state is discovered the coordinator partitions the

the tasks in the state and assigns different portions of tasks to different nodes. The

purpose of this assignment is to drive all nodes to finish together. The portion of tasks

in state s that belong to node i is represented by Ps,i where Ps,i ∈ [0, 1].

The coordinator uses the assignment of tasks to different nodes as a means to increase

the chance of all nodes to finish together, and no node becomes a bottleneck. To achieve

this goal, for every node i, the coordinator uses the number of tasks executed so far by

the node (called ETi) to calculate the execution speed of the node. This execution speed

is used to forecast the execution rate of the node in the future. Based on the calculated

speed for all nodes, and the given remaining workload of each node, the coordinator

decides the portion of the tasks that are assigned to each node.
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Adaptive partitioning algorithm

Assume that a new state s is discovered at time t. The coordinator calculates vi, the

speed of node i, as:

vi = ETi/t (A.1)

The remaining workload of node i can be calculated as the difference between the

number of assigned tasks (called ATi) and the number of executed tasks ETi. Based on

the calculated speed vi, the coordinator calculates the time it takes for node i to finish

execution of remaining tasks assigned to it. This time to completion is represented by

TCi and is calculated as follow:

TCi =
ATi − ETi

vi
(A.2)

After the coordinator distributes the new tasks among the nodes, the time to complete

all tasks will change. Assuming node i will continue executing tasks at rate vi, the new

estimation for the time to finish, called TC′i, is:

TC′i = TCi +
Ps,i × Es

vi
(A.3)

To drive all nodes to finish together, the coordinator seeks to make TC′ equal for all

nodes. That is, it seeks to make the following equation valid:

TC′1 = TC′2 = · · · = TC′N (A.4)

Equations A.4 can be re-written using equation A.3:

TC1 +
Ps,1 × Es

v1
= TC2 +

Ps,2 × Es

v2
= · · · = TCN +

Ps,N × Es

vN
(A.5)
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Let us take the first two expressions and re-write it:

TC1 +
Ps,1 × Es

v1
= TC2 +

Ps,2 × Es

v2
(A.6a)

⇒ TC1 +
Ps,1 × Es

v1
− TC2 =

Ps,2 × Es

v2
(A.6b)

⇒ (TC1 +
Ps,1 × Es

v1
− TC2)× v2 = Ps,2 × Es (A.6c)

⇒ (TC1 +
Ps,1 × Es

v1
− TC2)× v2 = Ps,2 × Es (A.6d)

⇒
(TC1 +

Ps,1×Es
v1

− TC2)× v2

Es
= Ps,2 (A.6e)

Similarly Ps,2, Ps,3, . . . and Ps,N can all be expressed as follow:

∀i : 2 ≤ i ≤ N : Ps,i =
(TC1 +

(Ps,1×Es)
v1

− TCi)× vi

Es
(A.7)

The coordinator intends to assign all of the events in the newly discovered states to

the nodes. Thus the sum of all P s for state s is 1. Therefore:

1 =
N∑
i=1

Ps,i (A.8)
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By expanding Ps,2, Ps,3, . . . and Ps,N in equation A.8, using equation A.7, we get:

1 = Ps,1 +
N∑
i=2

(TC1 +
(Ps,1×Es)

v1
− TCi)× vi

Es
(A.9a)

⇒ 1 = Ps,1 +
N∑
i=2

(Ps,1×Es)
v1

× vi + (TC1 − TCi)× vi

Es
(A.9b)

⇒ 1 = Ps,1 +
N∑
i=2

Ps,1 × Es × vi

v1 × Es
+

N∑
i=2

(TC1 − TCi)× vi
Es

(A.9c)

⇒ 1 = Ps,1 +
Ps,1 × Es

v1 × Es
×

N∑
i=2

vi +
N∑
i=2

(TC1 − TCi)× vi
Es

(A.9d)

⇒ 1 = Ps,1 × (1 +
Es

v1 × Es
×

N∑
i=2

vi) +
N∑
i=2

(TC1 − TCi)× vi
Es

(A.9e)

⇒ Ps,1 =

1−
N∑
i=2

(TC1 − TCi)× vi
Es

1 + Es
v1×Es

×
N∑
i=2

vi

(A.9f)

(A.9g)

Given the value of Ps,1 given by equation A.9, the value of Ps,2, Ps,3, . . . and Ps,N
can easily be calculated using equation A.7.

Limitations of the Adaptive Approach

The adaptive approach has two limitations:

1. It only works if there are enough events in a newly discovered state s to rescue

every bottleneck node. In other words, if there are not enough events in s, and

the workload gap between the nodes is large, the above-mentioned method fails to

assign enough jobs to all idle nodes and make them busy so that all nodes finish

together.
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2. The approach assign jobs to the nodes as soon as they are discovered. The method

assumes that the past performance of the crawler is an indication of its future

performance and based on this assumption it calculates the speed of the crawler.

This assumption creates a shortcoming: If a node starts with a fast pace, and get

assigned a large amount of tasks, then its computational processing power shrinks

and it becomes a bottleneck. Similarly, if a node starts with a small computa-

tional power, get assigned a small amount of tasks, then its computational power

increases, it will be idle until new states are discovered.

The second challenge is addressed by the Lazy-Adaptive approach.

A.4.3 Lazy-Adaptive approach

The adaptive approach allocates newly discovered tasks to the nodes based on the current

bottlenecks, and does not maintain any mechanism to deal with future bottlenecks or

idleness. This can be a problem, if all states are discovered early in the crawl, all tasks

are assigned to the node, and later in the crawl some nodes become bottleneck. Since

no new state is discovered, the strategy cannot balance the load between nodes.

As an enhancement to the adaptive approach we introduce another load balancing

approach: the Lazy-Adaptive approach. This approach is adaptive in assigning workloads

to the nodes. To do this, it introduces a delay in releasing the workloads to the nodes,

and uses this delay as a mechanism to gain knowledge about future bottlenecks.

This approach is similar to the adaptive approach in using the same formula to assign

tasks to the nodes. However, unlike the adaptive approach where new tasks are assigned

to the nodes as soon as they become available, in the Lazy-Adaptive approach new tasks

are held by the coordinator and dispatched to the nodes only at certain points in time.

The coordinator postpones assigning assigning and dispatching tasks to the nodes

as much as possible. In order to decide when to release the held tasks, the coordinator

calculates the number of un-executed tasks that each node has left. As long as all nodes

are busy, there is no need for the coordinator to dispatch jobs to the nodes. If there is a

node with only one task, the coordinator runs the algorithm to assign tasks and dispatch

new tasks to the nodes.
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A.5 Communication Pattern

The communication patterns of static, dynamic, adaptive, hybrid, and lazy-adaptive

approaches are depicted in Figure A.1. In this figure, solid lines represent transfer of

tasks communication among the nodes. Dashed lines, on the other hand, represent

coordination and administration communications. As the figure depicts:

• In the static approach, nodes act autonomously and communicate discovered states

among one another.

• In the dynamic approach, a centralized coordinator assigns work to the nodes.

• In the hybrid approach, nodes act semi-autonomously. Part of the discovered tasks

go to a coordination station. Free nodes retrieve these tasks from the coordination

station and execute them.

• In the adaptive approach tasks are released to all the nodes as soon as they are

discovered and no task is reserved. However, a centralized unit specifies the task

distribution among the nodes.

• The lazy-adaptive approach combines the adaptive and the hybrid approaches.

In this approach, a centralized coordination station is used to both, adjust task

distribution, and decide when to release new tasks to the nodes.

A.6 Conclusion

This appendix studies five load-balancing algorithms. Two of the load-balancing algo-

rithms introduced in the literature are static and dynamic approach. Based on the static

and dynamic approaches, a new Hybrid approach was introduced that incorporates el-

ements from both approaches. Another new approach called Adaptive approach was

introduced that learns and adapt to the computational speed of the nodes. Finally, to

take into account fluctuations in the computational speed of the nodes, a lazy version

of the adaptive algorithm, called lazy-adaptive approach, was introduced. The newly

introduced approaches can be used to better take advantage of cloud-computing.
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Figure A.1: Static, dynamic, adaptive, hybrid and lazy-adaptive load balancing

approaches .



Appendix B

Distributed Component-Based

Crawling of RIAs

The algorithms and architectures introduced in this thesis, assumed that the web crawler

explores all events on all states of the application. One of the major challenges in the field

of RIA crawling is the problem of state explosion. Real-life RIAs often use independent

widgets in their user interface. Interacting with one widget does not effect another widget.

Examples of independent widgets on the client interface are the Facebook chat page and

day rectangles in Google calendar. As the user chats with a friend, the interaction with

the chat window does not effect other widgets in the page. Similarly, as the user interact

with a given day widget, it is often the case that other days are not modified.

Moosavi[93] studies component-based crawling of RIAs. The introduced algorithm

identifies different components in the page. The strategy then interacts with identi-

fied widgets independently and updates its knowledge of widgets if required. Due to

the additional assumption of independence, this strategy out-performs other strategies

such as the greedy and probabilistic strategy by a far margin. This appendix studies

the distribution of the component-based crawling of RIAs and analyses the complexity

and overhead introduced by distribution. Main contributions of this appendix are two

partitioning algorithms described that can be used in the context of component-based

crawling. Albeit highly practical, due to the additional assumption, this strategy does

not always guarantee finding all states of the application. Therefore, contents of this

appendix are not included as a chapter in the thesis.

The rest of this appendix is organized as follow: In Section B.1, we briefly introduce

component-based crawling of RIAs. In Section B.2, we explain how to distribute the

140
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algorithm and run it in parallel over multiple nodes. In this section we describe the two

partitioning algorithms. Finally, In Section B.3, we conclude this appendix.

B.1 Introduction to Component-Based RIA Crawl-

ing

Component-based crawling of RIAs differs from other crawling strategies in two major

ways:

• State: In all crawling strategies, except the component-based strategy, the appli-

cation state is defined as the client-side state of the application. Client-side state

of the application is often defined as the state of DOM. Unlike other strategies, the

component-based crawling strategy defines components in the page. The assump-

tion of the strategy is that it can detect independent components in the page. Each

component itself can have different states. Therefore, component-based crawling

strategy does not define state of the application as state of DOM, but only deals

with the components in the page.

In the component-based crawling strategy, components are detected by calculating

the difference1 between the DOMs before execution of an event and the DOM af-

ter it. The algorithm first finds set of DOM elements that differ between the two

DOMs. After finding the nodes, the most immediate ancestor of all the changed

nodes is calculated. The subtree of this ancestor is considered to be a new compo-

nent. This new component is represented by the Xpath of the ancestor node. The

list of discovered Xpaths is stored in a database, and is used to verify weather the

discovered component is a new component, or the crawler has seen it before.

• Application Graph: With the exception of component-based strategy, in all

crawling strategies, the application graph is composed of vertices and edges. Nodes

corresponds to the application states and edges corresponds to the application

events. By representing the application graph this way, from any source state,

after executing an event, only one target state is reachable.

The component-based strategy defines the application graph differently. Unlike

the other strategies, in the component-based strategy, a node in the application

1For more details on the Diff algorithm see [61].
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graph does not correspond to the state of DOM, but to the components found in

the application. In the component-based crawling, the execution of an event can

change multiple components. In other words, executing an event from a component

can cause emergence of multiple separate components in the application graph. As

the result, multiple outgoing edges, representing the same event execution, can

exist from a node in the application graph to different nodes. Figures B.1 and

B.2 visualize this difference between application graph in a non-component-based

crawling strategy and the component-based crawling strategy:

– As the Figure B.1 shows, the application graph in a non-component-based

crawling strategy corresponds to a deterministic finite state machine. In this

model given a source state and a event to execute, the crawler always reaches

the same target state.

– In the case of component-based crawling strategy, as it is depicted in Fig-

ure B.2, vertices in the application graph do not represent single states of

DOM, but they are components of the DOM. In other words, the application

graph created during component-based crawling is not a state machine, and

at any given point multiple vertices of the graph may be present on the DOM.

Therefore, one event execution from a vertex can lead to multiple vertices (e.g.

executing event eh from state 8).

B.2 Distributed Component-Based RIA Crawling

The previously described distributed RIA crawler architectures (i.e. Dist-RIA, client-

server architecture, and peer-to-peer architecture) use the partitioning algorithm to par-

tition the task of executing JavaScript events among themselves. The partitioning algo-

rithm maps JavaScript events to the crawling nodes such that each event is assigned to

one and only one crawler. The partitioning algorithm cannot be used by the component-

based distributed RIA crawler, since the definition of state differs in component-based

crawling from our previous definition. In the component-based crawling algorithm, the

crawler does not execute every JavaScript event in every state of the DOM. Therefore, the

previously defined partitioning algorithms are not useful for component-based crawling.

This section introduces two new algorithms to distribute a component-based crawling

algorithm.
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Figure B.1: Application graph in a non-component-based crawling strategy: solid lines

represent events, and dashed lines represent a reset.

B.2.1 Partitioning based on component handlers

As explained earlier, in component-based crawling strategy, components are identified by

their XPath. One approach to parallelize the algorithm is to allocate each component to

one crawling node, or define a handler for each component. The component handler is the

node responsible to crawl a component. Every time a node discovers a new component,

it calculates the component XPath. Hash of the XPath is used to map the component

to its handler. If the node itself is the handler, it continues to crawl the component, if

not it will abandon the component. In both cases, weather the component handler is

the node itself or not, the node broadcasts the information about the new component to

other nodes.

Algorithm 2 shows the handler-based crawling algorithm ran by each crawler node.

Following procedures are used by this algorithm:

• getTask: This procedure chooses a task to execute. This procedure gets pending

tasks as input. Moosavi[93] suggests using a greedy algorithm to pick the next task

to execute. In order to find new components faster during crawl, the probabilistic

strategy could be used instead of the greedy strategy.

• GoToTargetDOM: This procedure runs multiple breath-first search algorithms

from the vertices that represent components in the current DOM, and stops when it
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Figure B.2: Application graph in a component-based crawling strategy: solid lines

represent events, and dashed lines represent a reset.

Algorithm 2 Task execution algorithm based on component handlers

TaskToExecute ← getTask(currentState,pendingTasks)

GoToTargetDOM (TaskToExecute)

domBefore← GetDOM ()

ExecuteTask(TaskToExecute)

domAfter← GetDOM ()

component← GetComponent(domBefore,domAfter)

componentHandler← GetComponentHandler(component)

BroadCastComponent(TaskToExecute,component)
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finds a path to the target component. After finding the shortest path, the procedure

executes the task. When the procedure returns the control to the caller function,

the crawler has access to the target state.

• GetDom: This procedure returns the DOM of the application.

• GetComponent: Given two DOMs, this procedure finds the most immediate

ancestor of all changed DOM elements in second DOM, and returns the ancestor

node XPath.

• BroadCastComponent: Given a component and the executed task, this pro-

cedure broadcasts the information about the executed task and the discovered

component.

• NotifyHandler: Given a component and its handler, this procedure sends a

synchronous message to the handler informing it of the component.

B.2.2 Partitioning based on component gate-keepers

By using the component handler to partition the work, the node simply delegate the

responsibility of crawling the component to the handler. This simple strategy results in

low number of network messages. Unfortunately, it is not necessarily the case that the

handler is readily at a state of DOM where the component is present. The handler has

to run a search algorithm to find the set of events it has to execute before it reaches

the target component. It then has to execute the events to reach a state where it can

interact with the component.

Another approach to partition the execution of JavaScript events is to define gate-

keeper for each component. The gate-keeper of the component is not necessarily respon-

sible to crawl the component itself, rather it is responsible to ensure that the component

is crawled by one and only one node. When a crawler node discovers a new component,

it calculates the XPath of the component and base on the hash of the XPath calcu-

lates the gate-keeper of the component. After finding the component gate-keeper, the

crawler node contacts the gate-keeper and informs it of the component. In response, the

gate-keeper responds with one of the following messages:

• The component is already assigned: This message notifies the node that the com-

ponent was assigned to another node. Upon receiving this message, the crawler

abandons the component and moves on to other tasks.
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• The component is not assigned: This message notifies the node that this component

is not assigned to any other node. At this point the node decides to take over the

responsibility of crawling the component based on its workload. If the node is not

busy with other tasks, it takes over the responsibility of crawling the component

by sending a request to the gate-keeper. If the gate-keeper approves, the node will

gain the responsibility to crawl the component.

In gate-keeper-based partitioning algorithm, the node that request the responsibility

to crawl the component from handler, is already at a state where it has access to the

component. Therefore, (if permission is granted) the node can simply interact with and

crawl the component without executing any JavaScript events to reach to the component.

Based on our experiments, it is often the case that execution of the JavaScript events

is the bottle-neck in a distributed crawling algorithm. Therefore, we envision that the

component gate-keeper-based partitioning algorithm has a better chance to outperform

handler-based partitioning algorithm. If the network becomes the bottleneck, however,

the handler-based strategy can outperform the gate-keeper-based strategy.

Algorithm 3 shows the crawling algorithm ran by each crawler node. getTask, Go-

ToTargetDOM, GetDom, GetComponent, BroadCastComponent and Noti-

fyHandler procedures are similar to B.2.1. New procedures used in are:

• GetComponentGateKeeper: Given a component, this function calculates the

gate-keeper for the component by taking the hash of its XPath and map the hash

to a node.

• RequestIfAssigned: Given a component and its gate-keeper, this procedure

sends a synchronous message to the component gate-keeper and asks the gate-

keeper if the component has been assigned.

• RequestForAssignment: Given a component gate-keeper, this procedure sends

a synchronous message to the component gate-keeper and request to take over the

responsibility to crawl the component.

• AddComponentToPendingTasks: This method adds the component to pend-

ing tasks, so it would be crawled eventually.
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Algorithm 3 Task execution algorithm based on component handlers

TaskToExecute ← getTask(currentState,pendingTasks)

GoToTargetDOM (TaskToExecute)

domBefore← GetDOM ()

ExecuteTask(TaskToExecute)

domAfter← GetDOM ()

component← GetComponent(domBefore,domAfter)

BroadCastComponent(TaskToExecute,component)

componentGateKeeper← GetComponentGateKeeper(component)

if GetWorkLoad() < WorkLoadThreshold then

handlerRespond←
RequestIfAssigned(componentGateKeeper,component)

if handlerRespond is ComponentIsNotAssigned then

assignmentRespond←
RequestForAssignment(componentGateKeeper,component)

if handlerRespond is Not AlreadyAssigned then

AddComponentToPendingTasks(component,pendingTasks)

end if

end if

end if
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B.3 Conclusion and Future work

This appendix introduced a distributed component-based crawler for RIAs. Two algo-

rithms to partition the search space based on the component handler and the component

gate-keeper were introduced. We envision that the former algorithm is better suited to

shift the burden away from JavaScript execution, while the latter algorithm is better

tuned to shift the burden away from the network; however, this needs to be verified in

future work.

A future direction to this appendix is combining the two partitioning algorithms

proposed. The proposed algorithms tend to either reduce the cost of executing tasks

at the cost of network, or vice versa. The combination of the two algorithms can help

reducing the network traffic as well as the burden on executing JavaScript events.



Appendix C

Cost of Discovering Application

States in the Client-Server

Architecture

C.1 Breath First Search Strategy
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Figure C.1: Client-Server Architecture: Cost of discovering Test-RIA application states
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Figure C.2: Client-Server Architecture: Cost of discovering Altoro-Mutual application

states
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Figure C.3: Client-Server Architecture: Cost of discovering Dyna-Table application

states
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Figure C.4: Client-Server Architecture: Cost of discovering Periodic-Table application

states
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Figure C.5: Client-Server Architecture: Cost of discovering Clipmarks application
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Figure C.6: Client-Server Architecture: Cost of discovering Elfinder application states

C.2 Greedy Strategy

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

103.5

104

104.5

T
im

e
in

M
il
li
-S
ec
o
n
d
s

Figure C.7: Client-Server Architecture: Cost of discovering Test-RIA application states
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Figure C.8: Client-Server Architecture: Cost of discovering Altoro-Mutual application

states
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Figure C.10: Client-Server Architecture: Cost of discovering Periodic-Table application

states
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Figure C.11: Client-Server Architecture: Cost of discovering Clipmarks application

states
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Figure C.12: Client-Server Architecture: Cost of discovering Elfinder application states
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Cost of Discovering Application

States in the Peer-to-Peer

Architecture

D.1 Breath First Search Strategy
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Figure D.2: Client-Server Architecture: Cost of discovering Altoro-Mutual application

states
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Figure D.4: Client-Server Architecture: Cost of discovering Periodic-Table application

states
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Figure D.6: Client-Server Architecture: Cost of discovering Elfinder application states

D.2 Depth First Search Strategy
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Figure D.7: Client-Server Architecture: Cost of discovering Test-RIA application states
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states
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Figure D.10: Client-Server Architecture: Cost of discovering Periodic-Table application

states
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Figure D.11: Client-Server Architecture: Cost of discovering Clipmarks application

states
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Figure D.12: Client-Server Architecture: Cost of discovering Elfinder application states

D.3 Greedy Strategy
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Figure D.13: Client-Server Architecture: Cost of discovering Test-RIA application

states
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Figure D.14: Client-Server Architecture: Cost of discovering Altoro-Mutual application

states
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Figure D.15: Client-Server Architecture: Cost of discovering Dyna-Table application

states



Distributed Component-Based Crawling of RIAs 164

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

104

105

106

T
im

e
in

M
il
li
-S
ec
o
n
d
s

Figure D.16: Client-Server Architecture: Cost of discovering Periodic-Table application

states
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Figure D.17: Client-Server Architecture: Cost of discovering Clipmarks application

states
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Figure D.18: Client-Server Architecture: Cost of discovering Elfinder application states

D.4 Probabilistic Strategy
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Figure D.19: Client-Server Architecture: Cost of discovering Test-RIA application

states
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Figure D.20: Client-Server Architecture: Cost of discovering Altoro-Mutual application

states
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Figure D.21: Client-Server Architecture: Cost of discovering Dyna-Table application

states



Distributed Component-Based Crawling of RIAs 167

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

103

104

105

106

T
im

e
in

M
il
li
-S
ec
o
n
d
s

Figure D.22: Client-Server Architecture: Cost of discovering Periodic-Table application

states
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Figure D.23: Client-Server Architecture: Cost of discovering Clipmarks application

states
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Figure D.24: Client-Server Architecture: Cost of discovering Elfinder application states
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